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Abstract. We investigate the potential of recurrent
neural networks (RNNs) to improve traditional on-
line multi-target tracking of traffic participants from
an ego-vehicle perspective. To this end, we build
a modular tracking framework, based on interact-
ing multiple models (IMM) and unscented Kalman
filters (UKF). Following the tracking-by-detection
paradigm, we leverage geometric target properties
provided by publicly available 3D object detectors.
We then train and integrate two RNNs: A state pre-
diction network replaces hand-crafted motion mod-
els in our filters and a data association network finds
detection-to-track assignment probabilities. In our
extensive evaluation on the publicly available KITTI
dataset we show that our trained models achieve
competitive results and are significantly more robust
in the case of unreliable object detections.

1. Introduction

Multi-target tracking (MTT) aims at jointly esti-
mating the number of targets and their current states
from a sequence of unreliable measurements. It is
one of the fundamental visual perception tasks for
autonomous driving (AD) [21] which allows, for ex-
ample, reactive navigation or motion planing.

In this work, we address the problem of track-
ing robustness despite unreliable detections, which
strongly degrade tracking performance. This re-
quires, on the one hand, precise state predictions
for frames without proper detections and, on the
other hand, reasonable track-to-detection assign-
ments. Hence, we train and integrate two recurrent
neural networks (RNNs) for these purposes, as illus-
trated in Fig. 1. The advantage as shown in our eval-
uations is that data-driven models generalize better
on numerous different situations.

Most recent online multi-target tracking ap-
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Figure 1. Tracking-by-detection scheme. We exchange
the highlighted modules (i.e. State Prediction and Data
Association) with data-driven recurrent neural networks.

proaches, e.g. [16, 30, 44, 50] follow the tracking-by-
detection paradigm and thus, assume a detected set of
possible targets in each frame. For AD, these detec-
tions are usually obtained from state-of-the-art object
detectors [29, 39, 45] which estimate 3D bounding
boxes from LiDAR data or RGB images.

Simultaneously tracking multiple targets is
commonly handled by applying a single target
tracker (STT) for each object instance, realized by
probabilistic filters [1, 6]. These filters predict the
current state usually relying on hand-crafted motion
models and update the predictions with assigned
detections to estimate the posterior distribution of
each track. A data association step assigns the most
reasonable detection to each track and consequently
allows the filter updates. Finally, MTT requires track
management to initialize and terminate trajectories.

Hence, the main challenges in multi-target track-
ing are the assignment of detections to tracks and de-
termining whether a track exists or not. The former
strongly depends on the detection quality. Many false
positive (FP) or false negative (FN, i.e. missed) de-
tections require additional knowledge of the tracked
targets, e.g. their motion behavior, to produce a
reasonable trajectory. Additionally, targets at high
speed, moving sensors and interacting targets hamper



accurate associations. The question whether a track
exists or not, on the other hand, is even harder to an-
swer. Occluded targets and false detections can lead
to missing or wrongly initialized tracks, respectively.

Our main contribution is to investigate several
tracking aspects for AD within a combined Bayesian
filter-based MTT framework. To track traffic partici-
pants in 3D world coordinates, we leverage the inter-
acting multiple model (IMM) [8] approach combined
with an unscented Kalman filter (UKF) [23, 47], to
allow multiple, potentially non-linear motion mod-
els. For our investigation, we focus on two tasks:
State prediction and data association. We exchange
these traditionally hand-crafted parts with learned
RNN models and evaluate their impact on the KITTI
dataset [17]. Our experiments demonstrate that our
data-driven models significantly improve the track-
ing performance, especially in the case of unreliable
or missing detections. Furthermore, in contrast to
most recent works which focus exclusively on well-
represented object classes (i.e. cars and pedestrians),
we consider all available object classes. This allows
more meaningful conclusions about the tracking ca-
pabilities for real-world AD scenarios.

2. Related Work

Because of the large diversity of tracking meth-
ods, we focus mainly on online filtering-based and
deep learning approaches which have been proposed
for traffic scenarios. For a more extensive survey
we refer the interested reader to the recent works of
Krebs et al. [27] and Vo et al. [46].

Bayesian Filtering: Most MTT algorithms follow-
ing the tracking-by-detection paradigm are modeled
as parallel STT approaches joined by a data associa-
tion step. However, even for the simple case of a sin-
gle target, well-known filtering approaches, e.g. lin-
ear Kalman filter (KF) [24] or UKF, can not be ap-
plied directly [46]. The reason for this are detection
origin uncertainties, FP and FN detections.

A simple solution to this problem is the nearest
neighbor (NN) filter [3, 9], which uses the closest
detection in terms of spatial distance to each pre-
dicted state, e.g. [1]. However, such a setup is prone
to lose tracks in case of wrong detection-to-track as-
signments due to FPs and FNs. An improved ver-
sion is the probabilistic data association (PDA) fil-
ter [2, 4]. It uses assignment probabilities of certain
detections in each frame and applies the state estima-
tion filter with weighted detections to all targets in-

dividually [3, 46]. This improves the results in clut-
tered environments. However, both filters, NN and
PDA, are designed for STT and should be used in
MTT problems with clearly separable targets only.

In contrast to this local data assocation, global
strategies consider all detections and tracked targets
in every frame. The most common approaches are
global nearest neighbor (GNN) and joint probabilis-
tic data association (JPDA) [15]. While the former
solves a minimization problem on given costs w.r.t.
distance, intersection over union (IoU) or likelihood,
the latter is an extension to the PDA filter. It performs
a weighted update including all detections within
a certain gating region simultaneously regarding all
tracks. For example, Choi et al. [10] combined GNN
association with a linear KF. Their association crite-
rion is based on a weighted sum of target distance
and size. In contrast, Sharma et al. [44] proposed a
tracker without filtering which solves the association
problem via the Hungarian [37] algorithm. They de-
vised several costs from 3D cues, which are directly
learned from monocular images.

Commonly used filtering approaches typically
employ a single linear motion model, e.g. constant
velocity (CV). However, traffic participants do not
always act in a linear way. Hence, the interact-
ing multiple model (IMM) [8] approach enables
switching various models representing different mo-
tion patterns. This includes, for example, the coor-
dinated turn modeled by the constant turn rate ve-
locity (CTRV) model and static or slow movement
modeled by the random model [31]. Rachman [40]
proposed a tracker for traffic scenarios based on un-
scented Kalman filtering with an IMM and JPDA,
which inspired our baseline MTT framework. How-
ever, his evaluation is restricted to a specific environ-
mental scenario with few selected KITTI sequences
and thus, complicates deducing insights on the gen-
eral applicability for autonomous driving.

The main drawback of these approaches is the
missing ability to handle a variable number of tracks.
Stacking all tracks in a single state vector, on the one
hand, restricts trackers to a fixed number of targets.
Initiating a new filter for each target, on the other
hand, requires an external track management. Alter-
natively, the multiple hypothesis tracker (MHT) [7,
41] builds hypotheses for all track-to-measurement
assignments over time including the possibility of
initiating and terminating tracks. However, the com-
plexity of MHT grows exponentially with each time



step, which requires complexity reduction, e.g. via
hypothesis pruning or track merging [11, 12, 25].

Sequential Monte Carlo (SMC) methods [14, 13,
36], like the particle filter [18, 34] can also be directly
used for state estimation. This filter usually performs
better in non-linear/non-Gaussian environments be-
cause it approximates the posterior PDF by a finite
set of particles. One drawback of these approaches,
however, is the high computational complexity.

Deep Learning: A more recent research direction
is to leverage deep neural networks (DNNs) for MTT.
They have gained a lot of attention within the last
years because of their impressive performance in
many computer vision challenges, especially object
detection and classification [28].

Despite the fact that AD requires tracking in 3D
world coordinates because vehicles depend on spa-
tial information, a lot of tracking approaches are de-
signed and evaluated in the image space. Sharma et
al. [44], for example, leverage 2D and 3D cues from
monocular images to perform tracking in the 2D im-
age space. Another 2D approach was proposed by
Gündüz and Acarman [19]. They exploit image fea-
tures to find similarities between consecutive frames.
In contrast, Zhang et al. [50] used 3D information
from point clouds fused with image features even
though they perform tracking in 2D.

On the other hand, one way to track in 3D world
coordinates from monocular images only, is to esti-
mate the distances between ego-vehicle and detected
targets [42]. End-to-end trainable models using 3D
LiDAR data [33] and additional RGB images [16]
were also proposed. Hu et al. [20] estimate 3D
bounding boxes from a sequence of images and track
them with a trained long short-term memory (LSTM)
network. A universal tracking approach based on
RNNs was proposed by Milan et al. [35]. Their end-
to-end trainable network represents equal structures
like well-known Bayesian filters and processes sim-
ple bounding box inputs.

In contrast to these, we leverage the best of both
worlds, i.e. combining learned motion/association
models and well understood filtering techniques.

3. Multiple Object Tracker

Given a sequence of noisy 3D bounding boxes,
we want to track all objects of interest trough time.
Each target is represented by its current state which
is modeled by a random variable. Such a task can
be seen as a dynamic state estimation problem. For

Figure 2. Sensor model [17] with ego-vehicle in black and
an exemplary target car in green.

this purpose, we model a single tracker for each tar-
get with the state-space approach which allows state
estimation from noisy detections. Thus, a dynamical
model describes the state transition over time and a
measurement model relates detections to the state.

A well-developed framework for this problem is
the Bayesian filter for which computational traceable
solutions (i.e. KF, UKF) exist. It can be applied in
a recursive manner to handle incoming detections
for each time frame which is crucial for an online
tracker. In the following we discuss the specific com-
bination of such filters we exploit for target tracking.
Additionally, we replace parts of the filters/trackers
with data-driven RNN models.

3.1. Bayesian Tracking Framework

Representations: Object detections are repre-
sented by 3D bounding boxes, relative to the ego-
vehicle’s center coordinates x, y, z as illustrated in
Fig. 2.

We further define the state vector at time t as
xt = (post, ωt, vt, ω̇t, bbt, ϕt)

T , where post denotes
the center coordinates xt, yt and zt, bbt denotes the
bounding box dimension, i.e. width wt, length lt and
height ht, and ϕt denotes the bounding box orien-
tation. Additionally, the state vector contains non-
observable parameters: Steering angle ωt, velocity vt
and turn rate ω̇t. Notice, we use different parameters
for steering angle and bounding box orientation to
support scenarios where ego-motion measurements
are not available.

The measurement vector zt contains observable
parameters which can be obtained from the object de-
tector at time t, i.e. zt = (xt, yt, zt, wt, lt, ht, ϕt)

T .

Unscented Kalman Filter (UKF): is a compu-
tationally tractable solution of the Bayesian filter
which allows non-linear dynamical models. The
main idea of the UKF is to propagate a fixed num-
ber of appropriately chosen weighted sample points
– so-called sigma points – through a non-linear func-



tion by using the Unscented Transformation (UT).
This process does not need an analytical derivation
of dynamic and measurement functions. We leverage
the scaled UT [22] which ensures a positive semi-
definite covariance matrix.

Thus, we first need to determine 2n + 1 sigma
points Xi,t−1 ∈ Rn with i ∈ {0, . . . , 2n} for n
state variables, weights w(m) ∈ Rn for state mean
x̂t−1|t−1, and weights w(c) ∈ Rn for the state co-
variance matrix P̂t−1|t−1. These weights depend on
the scaling factor λ = α2(n + κ) − n, where α
controls the spread of the sigma points around the
mean. The remaining parameters κ and β represent
another scaling and prior knowledge about the state
distribution, respectively. To avoid sampling non-
local effects under strong nonlinearities, the param-
eter should be 0 ≤ α ≤ 1. Furthermore, positive
semi-definiteness can be guaranteed by choosing the
parameter κ ≥ 0. A typically good choice for state
estimation problems is κ = 0. Finally, for Gaussian
distributions β = 2 is optimal, otherwise it should be
non-negative.

We further use the scaling parameters to sam-
ple scaled sigma points Xi,t−1 ∈ Rn with i ∈
{0, . . . , 2n} as in [22] from the previous posterior
state x̂t−1|t−1 and covariance Pt−1|t−1. Afterwards,
we propagate the sigma points through a potentially
non-linear function f(·) representing the dynamic
model and use the propagated sigma points

Xi,t|t−1 = f(Xi,t−1) ∀i ∈ {0, . . . , 2n}, (1)

to calculate the predicted mean x̂t|t−1 and covariance
Pt|t−1 as

x̂t|t−1 =

2n∑
i=0

w
(m)
i Xi,t|t−1, and (2a)

Pt|t−1 =

2n∑
i=0

w
(c)
i vT

x v
T
x + Qt, (2b)

with innovation vx =
(
Xi,t|t−1 − x̂t|t−1

)
and pro-

cess noise covariance matrix Qt ∈ Rn×n.
The update step requires a new set of 2n+1 sigma

points Xi,t ∈ Rn with i ∈ {0, . . . , 2n} for n state
variables and weights for predicted state mean x̂t|t−1
and corresponding covariance matrix P̂t|t−1. After-
wards, we propagate these sigma points through the
measurement function h(·)

Zi,t|t−1 = h (Xi,t) ∀i ∈ {0, . . . , 2n}, (3)

and build a weighted sum to obtain predicted a priori
measurements ẑt|t−1, the corresponding innovation

covariance matrix St and the cross covariance Ct as

ẑt|t−1 =

2n∑
i=0

w
(m)
i Zi,t|t−1, and (4a)

St =

2n∑
i=0

w
(c)
i vzv

T
z + Rt, and (4b)

Ct =

2n∑
i=0

w
(c)
i

(
Xi,t|t−1 − x̂t|t−1

)
vT
z , (4c)

with innovation vz =
(
Zi,t|t−1 − ẑt|t−1

)
and mea-

surement noise covariance matrix Rt ∈ Rq×q.
Finally, we compute the posterior mean x̂t|t and

covariance matrix Pt|t as

x̂t|t = x̂t|t−1 + CtS
−1
t (zt − ẑt|t−1), and (5a)

Pt|t = Pt|t−1 −CtS
−1
t CT

t . (5b)

Interacting Multiple Model: The original UKF
implementation supports only a single dynamic
model which is often also referred to as motion
model. Mostly, a single model is not able to cover the
motion behavior of various traffic participants. One
solution to this problem is the interacting multiple
model (IMM). It is a traceable approximation to the
intractable multiple model optimal Bayes filter [43],
which is modeled as jump Markov non-linear sys-
tem. Besides the states of a system, such a filter es-
timates mode probabilities, which defines how likely
a motion model matches the system’s behavior.

The multiple model optimal Bayes filter and its
approximation assumes a fixed set M = {Mj}rj=1
of r models, each processed by a recursive filter,
e.g. linear KF or UKF. Model state transitions within
the IMM are modeled by a first-order Markov chain
represented by a state transition probability matrix
Π = [pi,j ] ∈ Rr×r, where pi,j denotes the proba-
bility of a state transition from model i to model j.
Hence, the main diagonal pi,i contains the probabili-
ties to stay in the same model state.

Basically, a full cycle of the recursive IMM filter
contains four steps: interaction, prediction, update
and combination. First, we perform a probabilistic
mixing with the posterior state estimate x̂i,t−1|t−1
and covariance estimate Pi,t−1|t−1 of the previous
stage for each filter j as

x̂?
j,t−1|t−1 =

r∑
i=1

µi|j,t−1 x̂i,t−1|t−1, and (6a)

P?
j,t−1|t−1 =

r∑
i=1

µi|j,t−1
(
Pi,t−1|t−1 + viv

T
i )
)
, (6b)



with innovation vi = (x̂i,t−1|t−1 − x̂?
j,t−1|t−1). This

results in a single initial state x̂?
j,t−1|t−1 and covari-

ance P?
j,t−1|t−1. The mixing probabilities µi|j,t−1

can be calculated as

µi|j,t−1 =
pi,j µi,t−1

µ−j,t
, with µ−j,t =

r∑
i=1

pi,jµi,t−1, (7)

where µ−j,t is the predicted mode probability for filter
j at the current time step, µi,t−1 the mode probabil-
ity of the previous time step, and pi,j the transition
probability to switch from model i to j. In summary,
the previous filters with their mode probability and
the transition probability directly influence the initial
state of each filter.

Afterwards, each of the j filters performs a sepa-
rate prediction step as in Eq. (2) to obtain predicted
states x̂j,t|t−1 and corresponding covariance matrices
Pj,t|t−1. Additionally, this step yields predicted mea-
surements ẑj,t|t−1 and corresponding innovation co-
variance matrices Sj,t (see Eq. (4)). In order to obtain
the posterior state x̂j,t|t and covariance matrix Pj,t|t
each filter updates its state individually (see Eq. (5)).
Within an IMM filter cycle, we then update the mode
probabilities

µj,t =
Lj,t µ

−
j,t∑r

i=1 Li,t µ
−
i,t

, Lj,t = N
(
zt; ẑj,t|t−1,Sj,t

)
,

(8)
where Lj,t denotes the likelihood of a model fitting
the assigned measurement zt.

Finally, we obtain the posterior state x̂t|t and its
covariance Pt|t by combining the output of each fil-
ter, weighted by the mode probability

x̂t =

r∑
j=1

µj,t x̂j,t|t, and (9a)

Pt =

r∑
j=1

µj,t|t
(
Pj,t|t + vjv

T
j

)
, (9b)

with innovation vj = (x̂j,t|t − x̂t|t). Note that this
final result is not part of the filter recursion itself.

Within our tracking framework each tracker is ini-
tialized with three motion models as in [40]. First,
the constant velocity (CV) model for straight mo-
tion. Second, the constant turn rate velocity (CTRV)
model for coordinated turns, e.g. at cross ways. And
third, the random (RAND) model represents static or
slowly moving targets.

3.2. Data Association and Track Management

Following the tracking-by-detection scheme, our
approach requires an association mechanism which

joins tracks and detections in each time frame. To
this end, we leverage two different approaches. A
global exclusive method, i.e. Hungarian [37] algo-
rithm, on the one hand, and a joint probabilistic ap-
proach, i.e. JPDA [2, 15] on the other hand.

For the global exclusive approach we use the neg-
ative intersection over union value of targets and de-
tections to fill a cost matrix. Afterwards, the Hungar-
ian algorithm finds associations by minimizing the
total cost. Tracks without assigned detection and vice
versa are managed by the track management.

The JPDA approach takes all tracks and detections
of a certain time frame into account. First, it per-
forms a gating mechanism based on the Mahalanobis
distance between tracks and detections. Afterwards,
it calculates association probabilities for each detec-
tion within a certain gating region. Finally, the used
filter performs an update weighted by these associ-
ation probabilities. Detections which do not belong
to a gating region and tracks without assigned detec-
tions are also managed by the track management.

A simple track manager takes care of unassigned
detections and tracks. Based on fixed thresholds, a
track missing τm updates gets terminated. On the
other hand, detections without assignment are used
to initialize new tracks. Such newly initialized tracks
are considered active after receiving τu updates.

3.3. RNN Models

Our modular framework allows to exchange dif-
ferent parts with data-driven models. This is, on the
one hand, the IMM with hand-crafted motion mod-
els which can be replaced by a RNN trained for state
prediction. Data association, on the other hand, de-
pends on the intersection over union between tracks
and detections. Hence, we train an encoder-decoder
RNN to find association probabilities.

State Prediction: We leverage a two-layer LSTM
network with 256 hidden units each and a fully con-
nected output layer with two nodes and linear acti-
vation as shown in Table 1. The network takes the

Layer Type Input Output Activation
1 LSTM 4 256 -
2 LSTM 256 256 -
3 FC 256 2 identity

Table 1. Prediction network architecture.

center coordinates xt, yt of the bounding box ground
area and the ego-vehicle movement in x and y di-
rection as an input. The output is then the predicted
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Figure 3. Encoder-Decoder structured network for data as-
sociation using a bidirectional LSTM decoder [49].

center position of the bounding box ground area.
The model is trained with sequences of length 5

and optimized by the Adam [26] optimizer with a
learning rate of 0.003 and the mean squared error
loss. For inference, we replace the IMM by propagat-
ing the sigma points of the UKF through the trained
model (see Eq. (1)).

Data Association: Matching a variable number of
tracks and detections can be handled by an encoder-
decoder model [49]. We adapted this approach for
our purpose and thus, replace the encoder with a
RNN and the MSE loss with a cross entropy error
loss. Furthermore, we also learned the initial internal
states h0 and c0 of the decoder while training.

The input to this network are permutations of all
matching combinations betweenN tracks andM de-
tections including the case that a detection belongs to
no track. Fig. 3 shows the model structure. Each per-
mutation contains the last 5 states x of a track and
one detection d. All entries contain the center po-
sition x, y of the bounding box ground area and its
top-view dimension, i.e. width w and length l.

The encoded permutations ei of size 64 are the
input of the decoder, which is composed of one bidi-
rectional LSTM layer with 64 hidden units and two
fully-connected layers resulting in a single output for
each permutation pair. After softmax activation and
reshaping the output, we get a cost matrix represent-
ing the detection-to-track assignment probability.

Because the network is not able to learn the one-
to-one constraint between tracks and detections, we
apply the Hungarian algorithm on the cost matrix
at inference time. Furthermore, we remove assign-
ments with a probability < 0.5 and assignments to
the dummy track with probability > 0.5.

Training is also done with the Adam optimizer and
a learning rate of 0.003. To avoid overfitting, we ap-
ply early stopping and data augmentation, i.e. mirror-
ing along the x-axis and adding noise.

4. Experimental Results

Dataset: To demonstrate our multi-target tracking
framework for AD scenarios, we evaluate it on the
publicly available KITTI dataset [17] which provides
various environment categories, i.e. City, Residen-
tial and Road. The dataset contains RGB image
sequences and LiDAR data with corresponding 3D
bounding box annotations for eight different object
classes, i.e. Car, Pedestrian, Cyclist, Van, Tram, Per-
son sitting, Truck and Misc.

The KITTI dataset contains two partly overlap-
ping datasets: The tracking dataset and the raw
dataset. The former consists of 21 training sequences
and 29 test sequences and the latter contains 38 se-
quences, sorted by environment categories. For eval-
uations on the tracking dataset, we apply the widely
used train/validation split [38] since there are no pub-
lic annotations for the corresponding test data. For
evaluations on the raw dataset, we carefully select a
set of sequences1 containing all environmental cat-
egories as well as under-represented object classes,
i.e. Cyclist, Truck and Tram. We further ensure that
no training sequence is part of the validation set.

Performance measures: We employ the widely
used CLEAR measures [5], namely Multiple Object
Tracking Precision (MOTP) and Accuracy (MOTA).
MOTP reflects the tracker’s precision wrt. object lo-
cations and dimensions, whereas MOTA states the
overall tracking ability. MOTA can be described as
the consistent labeling of objects over time and takes
false positive trajectories (FP), false negative trajec-
tories (FN) and identity switches (IDS) into account.
Additionally, we report the common track quality
measures [32] which describe the coverage of tracks
as either mostly tracked (MT), partly tracked (PT) or
mostly lost (ML).

Baseline: In addition to our combined filter model,
we implement a 3D version of SORT [6]. Concur-
rently to our work, a similar SORT extension [48]
was submitted to KITTI2 (approximately 5–6 %
lower MOTA than the current leaders). This allows
us to compare our evaluations to state-of-the art ap-
proaches listed in this leaderboard.

Notation: For each experiment, we denote a
tracker configuration by the respective data associa-

1We use sequences 0001, 0005, 0014, 0018, 0060, 0084,
0020, 0039, 0064, and 0070 of KITTI raw as validation set.

2http://www.cvlibs.net/datasets/kitti/
eval_tracking.php

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php


IDS MOTA MOTP FPS

3D SORT 53 76.5% 75.5% 412
GNN 85 75.9% 74.6% 74
JPDA 99 72.1% 73.4% 50
RNNDA 48 76.2% 74.3% 33
RNNPr − GNN 68 77.2% 71.5% 40
RNNPr − RNNDA 78 75.6% 71.5% 34

Table 2. Evaluation of all tracker configurations on KITTI
raw dataset regarding precision, accuracy, ID switches
and runtime (without the object detection step) in frames
per second (FPS). Bold scores denote the best results.

tion scheme, e.g. GNN denotes the IMM-UKF base-
line with GNN [37]. RNNDA denotes the learned
data association network. Configurations which use
the data-driven state prediction model are denoted by
the additional prefix RNNPr.

4.1. Realistic Traffic Scenario

MTT for AD must perform well for all kinds of
object classes and environments. Hence, we evalu-
ate our trackers on the KITTI raw dataset, consider-
ing all traffic participants for which annotated ground
truth is available. Note that we use the corresponding
training set to optimize all parameters which are then
fixed for all further experiments.

KITTI raw dataset: The results in Table 2 show
that data-driven models improve the tracking perfor-
mance in different ways. The learned data associ-
ation model, on the one hand, produces the lowest
number of ID switches and the prediction model out-
performs the baseline by approx. 0.7% regarding
MOTA on the other hand. Fig. 4 reveals that the

Figure 4. Track coverage of all approaches on the selected
sequences of the KITTI raw dataset.

learned prediction model ensures also a high cover-
age of tracks. Additionally, it shows that the learned
association model minimizes the number of totally
lost tracks. Notwithstanding, we observe that the
threshold values regarding initiation and termination
of tracks highly influence the number of MT targets,
although this only slightly affects the overall MOTA.

IDS MOTA MOTP FPS

3D SORT 77 63.1% 73.1% 657
GNN 46 71.6% 73.2% 98
JPDA 63 60.0% 67.8% 77
RNNDA 43 72.1% 71.2% 54
RNNPr − GNN 65 72.0% 66.8% 52
RNNPr − RNNDA 72 71.7% 65.9% 48

Table 3. Evaluation on KITTI raw dataset, where we omit
detections of every second frame.

Fig. 5 shows qualitative results for RNNPr−RNNDA.

We observed that evaluating solely on the main
object classes (i.e. cars, pedestrians and cyclists)
shows only a minor performance improvement (over-
all 1–2 % MOTA). Nevertheless, we evaluate on all
object classes since they are all important for reliable
perception in AD.

Dropping Detections: In order to evaluate the
state prediction quality of all trackers, we drop de-
tections for selected frames. Because of period-
ically missing detections, updates in consecutive
time frames are not possible. Thus, we adapt the
thresholds for initialization and termination of tracks
within our track management. We set the threshold
for initialization to 1 which causes an immediate ini-
tialization and increase the threshold for termination
by the number of frames without detection.

Table 3 shows the results for omitting all detec-
tions in every second frame. We notice a significant
decrease w.r.t. MOTA for the baseline approach and
the tracker with JPDA. While the former is limited

Figure 5. Qualitative results of sequence ’0005’ from the
KITTI raw dataset. The illustration shows colored 3D
bounding boxes, each color representing a track instance.



IDS MOTA MOTP FPS

3D SORT 65 55.7% 72.5% 826
GNN 28 63.0% 71.5% 112
JPDA 54 48.4% 61.7% 107
RNNDA 44 67.2% 68.9% 73
RNNPr − GNN 48 63.8% 61.1% 60
RNNPr − RNNDA 53 67.3% 58.7% 56

Table 4. Evaluation on KITTI raw dataset, where we omit
detections of every second and third frame.

by a linear motion model, the latter suffers from its
static configuration. In contrast, configurations with
our learned components lose only ≈ 4%− 5% while
SORT loses more than 13% accuracy. This results in
an increase of ML tracks as illustrated in Fig. 6.

Table 4 shows the results for omitting all detec-
tions in every second and third frame. Again, SORT
and the JPDA tracker perform worse and the number
of ML tracks for these trackers is two times higher as
for our best performing approach.

4.2. Different Detectors

KITTI tracking dataset: For a better comparabil-
ity to state-of-the-art approaches, we also evaluate on
the widely used validation split [38] of the KITTI
tracking dataset. Note, however, that a direct com-
parison is not possible as most approaches evaluate
in 2D image space and only consider the three most
well-represented object classes (cars, pedestrians and
cyclists). Table 5 shows results for all object classes
which are approximately 9% worse in comparison to
our previous evaluations. This can be contributed
to the larger number of highly crowded pedestrian
scenes which cause frequent detection errors due to
heavy occlusions.

So far, all our reported results leverage Frustum
PointNets [39] detections. Table 6 demonstrates the
effect of using PointRCNN [45] instead. The results
are similar to Frustum PointNets (Table 5). However,

Figure 6. Track coverage of all approaches on the selected
sequences of the KITTI raw dataset assuming omitted de-
tections of each second frame.

IDS MOTA MOTP FPS

CIWT [38] (cars) 26 74.38% 82.85% -
CIWT [38] (ped.) 41 61.87% 78.85% -

3D SORT 160 67.2% 71.6% 358
GNN 191 68.9% 71.0% 50
JPDA 103 57.8% 72.2% 34
RNNDA 185 64.5% 70.3% 27
RNNPr − GNN 229 68.7% 67.0% 30
RNNPr − RNNDA 240 64.0% 66.1% 27

Table 5. Evaluation on the validation split of the KITTI
tracking dataset. Note that [38] only evaluate on selected,
well-represented object classes.

IDS MOTA MOTP FPS

3D SORT 64 66.4% 80.9% 400
GNN 67 68.5% 81.2% 62
JPDA 48 54.8% 81.4% 45
RNNDA 77 60.2% 81.4% 31
RNNPr − GNN 91 68.2% 76.7% 36
RNNPr − RNNDA 128 62.5% 76.3% 32

Table 6. Evaluation on the validation split of the KITTI
tracking dataset using PointRCNN [45] detections.

we observe a performance decrease for models with
RNNDA. This can be contributed to the model train-
ing, since RNNDA was trained using Frustum Point-
Nets detections. Additionally, the overall improved
MOTP results reveal a significantly better bounding
box orientation estimation of PointRCNN compared
to Frustum PointNets.

5. Conclusion

In this paper, we investigate several tracking as-
pects for AD within a combined Bayesian filter-
based MTT approach. In particular, we leverage the
IMM combined with UKF, as well as different data
association methods. In order to increase tracking ro-
bustness despite unreliable detections, we exchange
the state prediction and data association with data-
driven models. Our evaluations show competitive re-
sults to state-of-the-art approaches and an improved
robustness on the challenging KITTI dataset.
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