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(a) LiSu dataset sample (b) Our method applied on a Waymo frame (c) SHS-Net [31] applied on a Waymo frame

Figure 1. Our synthetic LiSu dataset (a) enables focusing research on the challenging task of LiDAR surface normal estimation. When
combined with our proposed method, we achieve state-of-the-art results (b) on challenging real-world datasets like Waymo Open Dataset [48],
outperforming the current state-of-the-art SHS-Net [31] (c). Best viewed in color on screen.

Abstract

While surface normals are widely used to analyse 3D scene
geometry, surface normal estimation from LiDAR point
clouds remains severely underexplored. This is caused by
the lack of large-scale annotated datasets on the one hand,
and lack of methods that can robustly handle the sparse and
often noisy LiDAR data in a reasonable time on the other
hand. We address these limitations using a traffic simulation
engine and present LiSu, the first large-scale, synthetic Li-
DAR point cloud dataset with ground truth surface normal
annotations, eliminating the need for tedious manual label-
ing. Additionally, we propose a novel method that exploits
the spatiotemporal characteristics of autonomous driving
data to enhance surface normal estimation accuracy. By
incorporating two regularization terms, we enforce spatial
consistency among neighboring points and temporal smooth-
ness across consecutive LiDAR frames. These regularizers
are particularly effective in self-training settings, where they
mitigate the impact of noisy pseudo-labels, enabling robust
real-world deployment. We demonstrate the effectiveness of
our method on LiSu, achieving state-of-the-art performance
in LiDAR surface normal estimation. Moreover, we show-
case its full potential in addressing the challenging task of
synthetic-to-real domain adaptation, leading to improved
neural surface reconstruction on real-world data.

†Work conducted prior to joining Amazon

1. Introduction

Representing 3D surfaces by their surface normals is benefi-
cial for a wide range of computer vision tasks, such as neural
rendering [51, 56, 63], robotics [3, 40, 46, 65], autonomous
driving [15, 38, 50], etc. While significant strides have been
made in monocular surface normal estimation, particularly
with large models trained on extensive datasets [2, 24, 26],
research on surface normal estimation from LiDAR point
clouds in the autonomous driving domain remains limited.

Existing methods for point cloud surface normal esti-
mation [14, 32, 33, 71] are tailored for small-scale CAD
datasets, such as PCPNet [21] dataset, and often based on
non-scalable architectures like PointNet [42]. Consequently,
these methods struggle with large-scale point clouds and
require either down-sampling or partitioning, which results
in increased runtime. They often assume dense and uniform
point distributions, making them ill-suited for LiDAR data,
which is characterized by sparsity, non-uniformity, and noise.
Moreover, the evaluation of these methods on LiDAR data
is hindered by the lack of publicly available datasets with
surface normal annotations.

To overcome these limitations, we present LiSu, a novel
synthetic LiDAR dataset targeted for research on surface nor-
mal estimation. We leverage CARLA [13], a versatile simula-
tion environment offering diverse urban and rural landscapes,
including downtown areas, small towns, and multi-lane high-
ways. By extending CARLA’s LiDAR sensor to capture not
only point locations but also surface normal vectors, we
curate an extensive dataset of roughly 50k frames.

Leveraging the strong feature extraction capabilities of
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Point Transformer V3 (PTv3) [58], we propose a single-step
approach for surface normal estimation. Our novel method
explicitly accounts for the inherent noise in LiDAR data by
incorporating two regularization terms: spatial consistency
and temporal consistency. These terms enforce smoothness
and temporal coherence, respectively, leading to more robust
and accurate normal estimates across consecutive frames. Im-
portantly, our method can be straightforwardly applied to do-
main adaptation scenarios, where our regularization terms ef-
fectively alleviate the adverse effects of noisy pseudo-labels
in self-supervised learning [61, 64, 66, 68, 69]. This enables
us to successfully bridge the synthetic-to-real domain gap,
making our model suitable for real-world deployment.

We evaluate our method on our LiSu dataset, benchmark-
ing it against two classical and four state-of-the-art methods
for point cloud surface normal estimation. In the absence
of real-world datasets with surface normal annotations, we
assess the effectiveness of our adaptation method by apply-
ing it to the real-world downstream task of neural surface
reconstruction [22, 52, 54, 63]. For this, we integrate our
surface normal estimator model as an oracle into a LiDAR-
only surface reconstruction method [66], demonstrating a
substantial performance improvement.

In summary, our main contributions are:
• Extending CARLA’s LiDAR sensor to capture surface

normals, enabling the generation of synthetic datasets for
LiDAR-based surface normal estimation methods.

• LiSu: A novel, synthetic LiDAR dataset for autonomous
driving, uniquely featuring labeled surface normals.

• Method employing data term regularizers to explicitly
model spatiotemporal dependencies within autonomous
driving datasets

• Extensive evaluation on both LiSu and real-world data.
• Publicly accessible code, dataset, and trained models at
https://github.com/malicd/LiSu

2. Related Work
Surface normal estimation from 3D point clouds involves
the computation of the normal vector at each point on a 3D
surface. Traditional methods achieve this by fitting a geo-
metric primitive, such as a tangent plane [23], jets [7] or
sphere [20], to a local neighborhood of the query point. The
normal vector of this fitted primitive is then used as an esti-
mate of the surface normal at the query point. More recently,
approaches leverage deep learning models to enhance sur-
face fitting [4, 14, 27, 28, 72]. Building upon the PointNet
architecture [42], several methods [5, 21, 29] directly regress
the surface normal vector from input point clouds.

These methods commonly utilize the PCPNet dataset [21],
which contains 30 synthetic objects. Each object consists of
100k points representing geometric shapes and figurines. To
mitigate the limited data, Guerrero et al. [21] introduced a
local patch sampling strategy, where N -point patches are ex-

tracted from the objects and used for training and inference.
However, this approach suffers from two limitations: patches
from the same object share an underlying distribution, and
complete shape estimation necessitates multiple inference
steps. The lack of data diversity and iterative inference rou-
tine render such approaches unsuitalbe for large-scale Li-
DAR point clouds.
Surface normal estimation from LiDAR point clouds re-
mains a challenging problem due to the data’s inherent spar-
sity, non-uniformity, and noise. Traditional surface fitting
methods often struggle with these characteristics. Badino
et al. [1] addressed this by extending plane fitting to Li-
DAR range images and incorporating a normalization mod-
ule for noise reduction. More recent approaches, such as
Bogoslavskyi et al. [6], leverage LiDAR scan lines to define
local neighborhoods and infer surface normals.

With the rise of autonomous driving datasets (e.g. [16,
48]), data from calibrated LiDAR and camera have become
widely accessible. This has spurred the development of mul-
timodal methods like Lin et al. [34] and DeepLiDAR [43],
which leverage both modalities. Scheuble et al. [45] intro-
duced PolLidar, a novel LiDAR sensor capable of capturing
time-resolved polarimetric wavefronts. They demostrate that
surface normals can be derived from LiDAR characteristics
beyond traditional geometric cues. However, these methods
rely on calibrated multi-sensor setups or specialized hard-
ware, limiting their adoption in real-world applications.

The field of LiDAR surface normal estimation is hindered
by the lack of a standardized benchmark dataset. While the
aforementioned works have made notable strides in address-
ing this, their datasets still exhibit limitations. For example,
DeepLiDAR primarily focuses on image-based tasks and
employs LiDAR merely as sparse depth information, not
providing LiDAR normals. Additionally, the datasets of Pol-
Lidar [45] and Lin et al. [34] are relatively small (1969 and
151 frames, respectively) and may not fully capture the diver-
sity of real-world scenarios. Crucially, these datasets were
not publicly available at the time of this submission.

To address these challenges, we introduce LiSu, a syn-
thetic LiDAR dataset of 50k frames with surface normal
annotations, freely available to our research community. Ad-
ditionally, we propose a novel method to effectively leverage
synthetic and unlabeled real-world data, enabling the devel-
opment of robust models that generalize well to real-world
scenarios.
Synthetic-to-Real Unsupervised Domain Adaptation
(UDA) for LiDAR point clouds transfers knowledge from
models trained on synthetic source data to real-world target
datasets [60, 64, 66, 67, 70]. Self-training is a widely em-
ployed UDA technique for various LiDAR-based tasks [8,
39, 44, 61, 66, 68, 69]. Our method closely aligns with exist-
ing UDA techniques. However, we introduce a novel spatial
and temporal regularization strategy to explicitly address the
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Dataset # Beams PPF # Fr. SN Pub.

Waymo [49] 64 160k 230k ✗ ✓
PolLidar [45] 150 - 1.9k ✓ ✗
Lin et al. [34] - - 151 ✓ ✗
LiSu 64 100k 50k ✓ ✓

Table 1. Overview of autonomous driving datasets, including Li-
DAR sensor configurations (number of beams, points per frame
(PPF)), total frames (Fr.), surface normal (SN) annotation availabil-
ity, and public (Pub.) accessibility.

inherent noise in pseudo-labels.
Neural implicit surface reconstruction parametrizes 3D
surfaces as Signed Distance Functions (SDFs) predicted by
a multi-layer perceptron (MLP) [41, 47, 54]. A common
optimization strategy involves guiding the learning objective
with surface normal cues estimated with monocular off-the-
shelf networks [19, 22, 52, 63]. These approaches leverage
the fact that SDF gradients at surface points correspond to
inward surface normals [25]. Naturally, the quality of normal
estimates plays a crucial role [19]. While LiDAR-only meth-
ods (e.g. [66]) may neglect surface normal regularization, our
work underscores the substantial benefits of precise surface
normal estimations for superior surface reconstruction.

3. Surface Normals from LiDAR Point Clouds
To enable LiDAR-based surface normal estimation research,
we introduce LiSu (Sec. 3.1), a large-scale synthetic Li-
DAR dataset with surface normal annotations. Moreover,
we propose a novel method (Sec. 3.2) which leverages the
spatiotemporal nature of autonomous driving data through
two data term regularizers, achieving state-of-the-art per-
formance on LiDAR surface normal estimation task. This
method also serves as a robust signal for mitigating pseudo-
label noise in self-supervised learning.

3.1. LiSu: LiDAR Surface Normal Dataset
We generate our dataset using CARLA [13], a simulation
framework based on the Unreal Engine. Specifically, we
leverage nine of CARLA’s twelve pre-built maps, exclud-
ing two reserved for the CARLA Autonomous Driving chal-
lenges and one undecorated map with low geometric detail
(i.e. without buildings, sidewalks, etc.). These selected maps
represent diverse urban and rural environments, including
downtown areas, small towns, and multi-lane highways. For
each simulation, we populated the scenes with a large num-
ber of dynamic actors, such as vehicles (cars, trucks, buses,
vans, motorcycles, bicycles) and pedestrians (adults, chil-
dren, police) as well as static props (barrels, garbage cans,
road barriers, etc.). The dynamic actors exhibited realistic
movement patterns, governed by the underlying physics en-
gine and adhered to real-world traffic rules, such as driving

low high

Figure 2. Spherical KDE plot using a von Mises-Fisher kernel to vi-
sualize surface normal distribution. Yellow regions indicate higher
density of surface normals. White regions in the south correspond
to physically impossible orientations, while those in the north rep-
resent extremely rare occurrences.

on designated roads and obeying traffic signals.
To capture realistic driving scenarios, we employ a virtual

LiDAR sensor mounted atop a car operating in autopilot
mode. The LiDAR sensor is configured to emit 64 laser
beams, a 10◦ upper and a −30◦ lower field of view. Such a
common sensor configuration (e.g. [16, 48]) strikes a balance
between sparsity and density, providing a challenging yet
fair evaluation environment. To further mimic real-world
conditions, we set the maximum range to 100 meters and
introduce Gaussian noise with a standard deviation of 0.02
meters to the LiDAR point cloud. The sensor captures data
at a rate of 10Hz. We provide additional information about
our simulation setup in the appendix.

CARLA’s default LiDAR sensor implementation is lim-
ited to position and intensity channels. To enable surface
normal collection, we extend CARLA’s ray tracer to query
surface normals at each intersection point between a ray and
a mesh object. These surface normals are then transformed
into the sensor’s coordinate frame and appended to the Li-
DAR data. This requires modifications to both CARLA’s
C++ backend and Python frontend, adding three extra chan-
nels to store the x, y, and z components of the normal vector
for each LiDAR point.

For each map, we conduct eleven randomly initialized
and independent simulation runs. A simulation is terminated
early if prolonged traffic halts, such as red lights, occur. On
average, each simulation lasts approximately 50 seconds, re-
sulting in total of 50 045 labeled frames. To ensure rigorous
evaluation, we partition our dataset into training, validation,
and testing sets. We assign each map to exactly one split,
preventing data leakage (i.e. using the same “city” in multi-
ple splits). One map is designated for validation, while the
remaining eight maps are divided equally between the train-
ing and testing sets. This results in 25 053 training, 22 167
testing, and 2825 validation frames. The full dataset will be
released publicly via a Research Data Management platform
upon publication.

Surface normals, being unit vectors, can be intuitively
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Figure 3. Exemplary LiDAR frames from our LiSu dataset (left: tunnel portal, right: urban scene). Surface normals are linearly mapped to
the RGB color space. The color legend spheres in the bottom right corners provide a visual reference to interpret the normal directions.

visualized as points on a unit sphere. Fig. 2 illustrates a
spherical Kernel Density Estimate (KDE) plot using a von
Mises-Fisher kernel to represent the distribution of surface
normals. Our CARLA simulation, mirroring real-world en-
vironments, inherently produces imbalanced datasets. For
instance, the southern hemisphere, excluding a minor region
around the south pole corresponding to ceiling surfaces (e.g.
in tunnels in Fig. 3), is largely unoccupied, since it is not
physically possible for a surface to be oriented away from
the LiDAR sensor. Additionally, real-world scenes are dom-
inated by road surfaces (concentrated near the north pole)
and wall surfaces (near the equator), leading to a highly
skewed dataset. We address the challenges posed by this
data imbalance in Sec. 4.1.

3.2. LiDAR Surface Normal Estimation
Given a LiDAR point cloud P ∈ RN×3, we aim to learn a
mapping Φ : RN×3 7→ RN×3 that, for each point pi ∈ P,
predicts a corresponding surface normal n̂i ∈ R3. While our
method is architecture agnostic, we employ state-of-the-art
Point Transformer V3 (PTv3) [58] as Φ. Given the ground
truth label n, our loss function is defined as

LL1 =
1

N

∑
i∈N

||ni − n̂i||1. (1)

While this type of supervision can guide the overall train-
ing procedure towards a local minima, it often fails to guar-
antee spatial and temporal coherence or accurate unit sphere
estimates: As a result, the model may produce inconsistent
predictions, such as assigning opposing normal directions
to points on the same surface or generating significantly dif-
ferent surface normal estimates for the same surface across
consecutive frames.

To overcome these limitations, we propose three addi-
tional data terms that exploit the following key observations:
(1) normal vectors should be piecewise smooth, (2) normal
vectors should exhibit temporal consistency, and (3) normal

vectors, being unit vectors, should be constrained to the unit
sphere. To enforce both spatial and temporal coherence, we
adopt Graph Total Variation (GTV) regularization. While
our formulation shares similarities with prior works in point
cloud super-resolution [11, 12], we deviate by incorporating
GTV as a data term regularizer instead of the primary ob-
jective function. In the following, we delve deeper into our
regularization terms and present the overall loss objective.
Spatial GTV (SGTV) Regularization. The spatial regular-
ization term operates under the assumption that geometri-
cally close LiDAR points belong to the same surface and thus
share the same surface normal vector. We first convert our
point cloud P into a k-neighborhood graph G = (V, E ,W),
with set of nodes V and edges E . We associate each node
i ∈ V with a location pi and the respective surface normal
prediction Φ (pi) = n̂i. The edge weights are defined with
an adjacency matrix Wij = [wij ], where

wij = exp

(
−||pi − pj ||22

σ2

)
(2)

considers the spatial proximity between points pi and pj .
It assumes values close to 1 for nearby points and tends
towards 0 as the distance between them grows. The parame-
ter σ determines the scale at which proximity is measured,
influencing the rate of decay of the edge weights with in-
creasing distance. During optimization, we penalize spatially
inconsistent surface normal predictions by

LSGTV =
1

|E|
∑

(i,j)∈E

wij ||n̂i − n̂j ||1. (3)

Temporal GTV (TGTV) Regularization. LiDAR point
clouds are commonly captured sequentially at high frequency
(e.g. 10Hz as in ONCE [37], WOD [48], or Argoverse [57]),
resulting in substantial overlap between consecutive LiDAR
scans. Global registration modules, such as GPS coupled
with IMU, allow for alignment of these frames to a common
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key frame. This is particularly effective for static objects,
while dynamic objects, such as moving vehicles, may exhibit
slight misalignments. However, in typical autonomous driv-
ing settings, the number of LiDAR points corresponding to
static scene contents vastly outnumbers the number of points
corresponding to dynamic objects. We exploit the sequen-
tial nature of these datasets to enforce temporally coherent
surface normal predictions.

During training, we employ mini-batches comprising
pairs of consecutive point clouds, (Pt,Pt+1), along with
their corresponding global poses (with respect to the key
frame), (Tt,Tt+1) ∈ R4×4. Both point clouds undergo
random affine transformations, (At,At+1) ∈ R4×4, en-
compassing rotations, translations, flips, and other standard
augmentations. For improved readability, we adopt the con-
vention P ≜ ATP throughout the paper.

After the forward pass Φ (Pt) and Φ
(
Pt+1

)
, we con-

struct a bipartite graph G =
(
{Vt,Vt+1}, E ,W

)
, where

each node i ∈ Vt is associated with the transformed key
frame point (TtAt)

−1
pt
i and key frame surface normal

prediction (TtAt)
−1

n̂t
i. Similarly, each node j ∈ Vt+1

is associated with the point
(
Tt+1At+1

)−1
pt+1
j and sur-

face normal prediction
(
Tt+1At+1

)−1
n̂t+1
j . Analogous to

Eq. (2), the weight adjacency matrix is defined as

wij = exp

−

∥∥∥(TtAt)
−1

pt
i −

(
Tt+1At+1

)−1
pt+1
j

∥∥∥2
2

σ2

 .

(4)

Finally, we penalize incoherence between two consecutive
frames with

LTGTV =
1

|E|
∑

(i,j)∈E

wij∥
(
TtAt

)−1
n̂t
j−

(
Tt+1At+1

)−1
n̂t+1
j ∥1, (5)

which enforces temporal smoothness.
Eikonal Regularization. Recent studies [18, 22, 53] have
shown that enforcing unit-norm constraints on SDF gradients
at object boundaries significantly improves model robustness.
Following this principle, we constrain our predicted surface
normals to lie on the unit sphere:

LEikonal =
1

N

∑
i∈N

(∥n̂i∥2 − 1)
2 . (6)

Training Objective. Our training objective is a weighted
combination of the loss and data regularization terms:

L = LL1 + γ (LSGTV + LTGTV + LEikonal) . (7)

We empirically determined the optimal trade-off parameter
γ to be 0.1.

4. Experiments
In the following, we present a comprehensive experimen-
tal evaluation demonstrating the superior performance of
our method on LiSu for LiDAR surface normal estimation
(Sec. 4.1). We further highlight the positive impact of our
LiSu on direct transfer to real-world datasets (Sec. 4.2) and
self-supervised domain adaptation. Finally, we show how
our regularization terms mitigate the negative effects of noisy
pseudo-labels (Sec. 4.2) in real-world neural surface recon-
struction.

4.1. Surface Normal Evaluation
Dataset. Due to the lack of LiDAR datasets with surface
normal annotations, in the following we conduct our ex-
periments on our LiSu dataset. We train our models on the
designated training split, comprising 25 053 labeled samples.
Previous methods, including PCPNet [21] and SHS-Net [31],
partition point clouds into N -point patches, necessitating
multiple inference steps for each frame. These methods re-
quire on average over 10 seconds per frame, making com-
prehensive evaluation time-consuming. To enable a fair com-
parison within a reasonable timeframe, we downsampled
our test set to every fifth frame, reducing the number of test
frames to 4433. In contrast, our proposed method processes
the entire point cloud in a single inference step. This allows
us to process each frame in approximately 50 milliseconds.
Metric. Previous works on LiDAR surface normal estima-
tion, such as [34], have adopted evaluation protocols inspired
by PCPNet [21]. However, these protocols, which involve
progressively adding artificial noise, are not ideal for inher-
ently noisy LiDAR data. Other methods, like [45], impose
overly strict error thresholds (e.g. 3◦), making them equally
unsuitable. Instead, we propose a more realistic evaluation
protocol that accounts for the natural noise and sparsity of
LiDAR data. More specifically, we report the mean (mean),
median (median) and root mean square (RMSE) angular
error in degrees. Additionally, we provide accuracy metrics
for various angular error thresholds: 5.0◦, 7.5◦, 11.25◦,
22.5◦, and 30.0◦. These metrics indicate the percentage of
predictions with angular error below the respective threshold.
Baseline. First, we benchmark our method against two unsu-
pervised surface normal estimation methods: PCA [23] and
Jet [7]. For both, we utilize a neighborhood size of k = 32
points and orient normals towards a common viewpoint. Sub-
sequently, we train seven state-of-the-art supervised methods
on the training split of our LiSu dataset: PCPNet [21], CMG-
Net [59], GraphFit [28], Du et al. [14], NGL [30], Neu-
ralGF [33], and SHS-Net [31]. To adapt to the characteristics
of LiDAR data, we modify the original implementations by
reducing the number of points per patch from 500 (within
a 0.1 meter radius) to 32. To accommodate the two orders
of magnitude increase in scale of the training data, we have
opted to reduce the number of training epochs. This allows
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Method mean ↓ median ↓ RMSE ↓ 5.0◦ ↑ 7.5◦ ↑ 11.25◦ ↑ 22.5◦ ↑ 30.0◦ ↑ Avg. Runtime

PCA [23] 76.18 29.10 110.95 44.95 46.86 48.45 51.02 52.09 0.06
Jet [7] 39.02 25.11 53.96 11.08 20.75 33.31 50.47 56.97 14.55
PCPNet [21] 9.88 1.42 20.56 67.42 72.41 76.87 84.75 88.10 14.31
CMG-Net [59] 10.05 2.44 20.24 65.15 71.09 75.94 78.40 80.03 40.01
GraphFit [28] 8.98 0.93 19.57 73.49 75.68 77.42 79.88 80.80 19.42
Du et al. [14] 8.81 0.93 19.54 73.53 75.92 77.75 80.05 80.88 16.26
NGL [30] 9.88 1.21 18.43 77.39 79.48 81.44 84.70 86.24 26.27
NeuralGF [33] 8.57 1.19 19.57 67.08 71.42 74.84 79.48 81.37 17.58
SHS-Net [31] 6.46 0.67 18.40 79.66 83.57 86.77 90.79 92.06 24.27
Ours 6.30 0.43 17.58 81.10 84.44 87.32 91.66 93.09 0.09

Table 2. Evaluation of surface normal estimation methods on the LiSu test split. Mean, median, and root mean square (RMSE) angular error
in degrees, as well as accuracy for various angular error thresholds, and average runtime per LiDAR point cloud (in seconds) are reported.
Best and second-best values are highlighted in bold and underlined, respectively.

us to maintain the same total number of iterations, ensuring
that the model is exposed to an equivalent amount of training
data. We provide more detailed information in the appendix.
Implementation Details. We adopt the default PTv3 [58]
configuration, which consists of a four-stage encoder-
decoder architecture. We optimize our model using
AdamW [36] with a maximum learning rate of 0.003 and a
weight decay of 0.005. The learning rate schedule comprises
a short (1 epoch) warm-up phase followed by cosine anneal-
ing [35]. We train our model on 8 A100 GPUs using mixed
precision with a batch size of 32. Standard point cloud aug-
mentation techniques, such as rotation, flipping, and scaling,
are utilized. Training is terminated after 50 epochs.

To address the class imbalance in our dataset (illustrated
in Fig. 2), we employ a weighted loss function: Each data
sample is weighted inversely proportional to the frequency of
its ground truth surface normal occurrence. This effectively
upweights underrepresented classes, such as less common
surface orientations, while downweighting overrepresented
classes. Consequently, the model is encouraged to focus
more on the challenging, less frequent samples.
Results. Table 2 presents the comparison of the surface
normal estimation methods. Traditional methods, such as
PCA [23] and Jet [7], are known to be sensitive to noise and
prone to ambiguities in the orientation of their surface nor-
mal estimates. When applied to sparse and non-uniform Li-
DAR data, as demonstrated in Tab. 2, these methods exhibit
significant limitations, often producing unreliable results.

Our proposed training method allows us to build a PTv3-
based surface normal estimator that comfortably surpasses
state-of-the-art supervised methods in both accuracy and
speed. Compared to PCPNet [21], GraphFit [28], and Du et
al. [14], we achieve a significant reduction of over 2.5◦ in
mean average angular error and an 8% increase in accuracy
at the 5.0◦ threshold. Additionally, we outperform SHS-
Net [31] by reducing the median angular error by 0.24◦ and

LL1 LSGTV LTGTV LEikonal RMSE ↓ 5.0◦ ↑
✓ 19.82 78.70
✓ ✓ 17.78 81.06
✓ ✓ 17.72 81.08
✓ ✓ 17.74 80.65
✓ ✓ ✓ ✓ 17.58 81.10

Table 3. Influence of proposed components on the in-domain model
performance. Models are trained on the full LiSu training split and
evaluated on a 20% test split.

improve the 5.0◦ accuracy by 1.44◦. Furthermore, our model
processes a single LiSu frame in just 90 milliseconds on
average, significantly outperforming state-of-the-art methods
like SHS-Net, PCPNet, and GraphFit (which require over
14 seconds). This substantial speedup is attributed to our
approach of processing the entire LiDAR point cloud at once,
eliminating the need for partitioning and multiple inference
steps, as required by state-of-the-art methods.
Regularization Ablation Study. To assess the individual
contribution of each component proposed in Sec. 3.2, we
conduct an ablation study shown in Tab. 3. Each component,
when trained from scratch on our full training split, outper-
forms our baseline model (trained with LL1 loss only). The
model incorporating all proposed losses demonstrates the
best overall performance.

4.2. Synthetic-to-Real Domain Adaptation
In the following, we qualitatively assess the state-of-the-art
in surface normal estimation on real-world LiDAR point
clouds from the Waymo Open Dataset [48]. We highlight the
limitations of traditional methods and show that direct trans-
fer from our LiSu dataset significantly reduces the synthetic-
to-real domain gap compared to the existing PCPNet [21]
dataset. Furthermore, we demonstrate how our method can
effectively bridge this gap.
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Classical approaches based on PCA [23] (see Figure 4,
first row) do not require labeled data but suffer from sur-
face normal orientation ambiguities, particularly with noisy
LiDAR point clouds. For instance, points on a road with up-
ward (blue) or downward (brown) normals can be interpreted
as correct, depending on the perspective. Yet, physical con-
straints dictate a single correct orientation, which is upward
in this case. More recent approaches, such as SHS-Net [31]
(second row in Figure 4), trained on the PCPNet dataset,
exhibit similar limitations while providing smoother pre-
dictions. Our direct domain transfer experiments (third and
forth row in Fig. 4), i.e. models trained on our LiSu dataset
and employed without any adaptation to Waymo, reveal al-
ready tremendous improvement. This demonstrates that for
the downstream task of LiDAR surface normal estimation,
our LiSu dataset, as anticipated, is much better suited than
existing CAD-based datasets like PCPNet.

To further enhance model robustness and generalization,
we leverage our surface estimation method (Sec. 3.2) within
a self-training paradigm, successfully reducing the domain
gap. We first pretrain our model on the LiSu training split,
followed by a second phase on the Waymo train split, lever-
aging pseudo-labels and our proposed data term regulariza-
tion to mitigate noise. In the second (self-training) phase,
we optimize our model using AdamW [36] with a maxi-
mum learning rate of 0.001 and weight decay of 0.005. To
preserve the learned feature representation from the clean
data, we employ differential learning rates [62], assigning
lower learning rates to shallow layers and exponentially de-
caying them with network depth by a factor of 0.85. We
employ standard point cloud augmentation techniques, such
as rotation, flipping, and scaling. The learning rate schedule
employs a short warm-up phase followed by linear anneal-
ing [35]. Our model is trained on 4 A100 GPUs using mixed
precision with a batch size of 32 for 10 epochs. In contrast to
other approaches, our method consistently produces accurate,
smooth, and correctly oriented surface normal predictions.

4.3. Neural Surface Reconstruction

Our work demonstrates that the combination of our method
with LiSu effectively reduces the domain gap between
datasets. However, the specific influence of our regulariza-
tion technique on the overall self-training process remains
unclear. Due to the scarcity of real-world LiDAR datasets
with surface normal annotations, we opted to evaluate its
effectiveness indirectly through a downstream task: neural
surface reconstruction.

Previous methods in this domain often leverage geomet-
ric priors, such as surface normals derived from monocu-
lar images [19, 22, 52], to improve reconstruction quality.
These methods typically penalize discrepancies between
the SDF boundary gradients and the predicted surface nor-
mals [63]. However, LiDAR-only neural surface reconstruc-
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Figure 4. Qualitative evaluation of traditional and learning-based
methods on a challenging Waymo frame. Notably, the current state-
of-the-art (SHS-Net [31] trained on PCPNet [21]) struggles to
generalize to noisy and sparse LiDAR data. When trained on our
proposed dataset (LiSu), both SHS-Net and our method yield rea-
sonable results on the Waymo frame. In the last row, we demon-
strate how leveraging our method within a self-supervised learning
paradigm significantly enhances overall estimation, resulting in
accurate, smooth, and consistently oriented predictions.

tion approaches, such as ReSimAD [66], are limited by the
absence of reliable surface normal estimation methods for
real-world LiDAR data. Therefore, we leverage our unsu-
pervised training approach from Sec. 4.2, to learn a robust
LiDAR surface normal estimator from the real-world Waymo
dataset. This prior is then integrated into ReSimAD to en-
hance its surface reconstruction capabilities.

We inherit the evaluation protocol established in [22, 66]:
For each sequence, we train a SDF model using point cloud
data from all five Waymo LiDAR sensors, as described in
[66]. A single mesh is then reconstructed for the entire se-
quence using this trained model. To simulate a real-world
top-mounted LiDAR, virtual sensors are positioned at the
locations of the real physical sensors and synthetic point
clouds are generated by ray-casting the reconstructed mesh.
We evaluate the accuracy of these synthetic point clouds
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Seq. ReSimAD [66] DT LL1 L

1006130 2.53 / 0.25 2.51 / 0.26 2.51 / 0.24 2.51 / 0.23
1172406 1.95 / 0.52 1.95 / 0.50 1.96 / 0.51 1.90 / 0.47
1323841 2.16 / 0.70 2.15 / 0.75 2.16 / 0.74 2.12 / 0.68
1347637 2.07 / 0.33 2.05 / 0.25 2.05 / 0.29 2.02 / 0.28
1486973 1.80 / 0.19 1.83 / 0.21 1.79 / 0.20 1.79 / 0.20
1506235 1.54 / 0.38 1.50 / 0.38 1.52 / 0.37 1.46 / 0.34
1664636 2.15 / 0.53 2.19 / 0.51 2.10 / 0.48 2.08 / 0.47
4058410 1.91 / 0.36 1.91 / 0.34 1.91 / 0.40 1.90 / 0.31

average 2.01 / 0.41 2.01 / 0.40 2.00 / 0.40 1.97 / 0.37

Table 4. We evaluate neural surface reconstruction on diverse
Waymo sequences using Root Mean Square Error (RMSE) / Cham-
fer Distance (CD). Lower values indicate better performance. ReSi-
mAD [66] omits surface normal loss during reconstruction. Direct
Transfer (DT) applies a model trained on LiSu without adaptation.
L (Eq. (7)) and LL1 (Eq. (1)) denote Waymo self-trained models
with and without regularization, respectively.

by comparing them to the corresponding real-world point
clouds using Root Mean Square Error (RMSE) and Chamfer
Distance (CD) metrics in Table 4.

Surface reconstruction in ReSimAD is solely guided by
the LiDAR point cloud information. While this already pro-
duces reasonably good meshes, the SDF of regions that are
not hit by a LiDAR beam remain undefined. This leads to
coarse meshes and jittering artifacts clearly visible in the ex-
emplary ReSimAD results in Fig. 5. Incorporating estimated
surface normals into ReSimAD improves the mesh recon-
struction notably, as illustrated in the three bottom rows of
Fig. 5: Directly transfering (DT) a surface normal estimator
trained (solely) on LiSu to the Waymo data results in bet-
ter surface normal estimates and, consequently, a smoother
surface reconstruction near the ego vehicle. Subsequently
applying our proposed self-supervised domain adaption fur-
ther improves the results: the bottom row of Fig. 5 illustrates
the benefits of our proposed regularization, which leads to
smooth surface meshes, even at far distances from the ego
vehicle. Naı̈vely performing self-supervised adaptation with-
out our regularization (i.e. solely using the LL1 loss from
Eq. (1)), on the other hand, does not improve the results.

5. Conclusion
We introduced LiSu, a synthetic dataset designed to advance
research on LiDAR-based surface normal estimation. With
more than 50 000 LiDAR frames, obtained from a state-
of-the-art traffic simulation engine, LiSu presents an ideal
testbed to develop and benchmark LiDAR surface normal
estimation approaches. To properly leverage this large-scale
synthetic data we propose a method that exploits the spa-
tiotemporal nature of LiDAR scans in autonomous driving
settings via meticulously designed regularization constraints.
Moreover, we show that our method can be seamlessly ex-
tended to domain adaptation scenarios, where it helps to
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Figure 5. Reconstructed meshes from Waymo sequence 1172406,
color-coded with surface normals. ReSimAD [66] omits surface
normal loss during reconstruction. Direct Transfer (DT) applies
a model trained on LiSu without adaptation. L (Eq. (7)) and LL1

(Eq. (1)) denote Waymo self-trained models with and without regu-
larization, respectively.

alleviate the negative effects of noisy pseudo-labels. Across
several experiments, we demonstrate the utility of LiSu and
our method to obtain outstanding results in surface normal es-
timation and their positive impact on the downstream task of
surface reconstruction from real-world LiDAR point clouds.
We believe the LiSu dataset will help our research commu-
nity to improve LiDAR-based surface normal estimation
approaches and, consequently, leverage these to advance
autonomous driving: For example, scenario generation for
domain adaptation research (i.e., re-rendering scenes with
different simulated LiDAR configurations) will benefit from
improved surface reconstructions.
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LiSu: A Dataset and Method for LiDAR Surface Normal Estimation

Supplementary Material

This supplementary material provides an in-depth analy-
sis of inference speed for the models used in our benchmarks
(App. A). Additionally, it offers comprehensive details on the
acquisition of our LiSu dataset (App. B) and the implementa-
tion specifics of baseline methods (App. C). Furthermore, we
present additional experiments for the neural surface recon-
struction downstream task (App. D), qualitative evaluations
(App. E), and a rigorous ablation study exploring the impact
of various design choices (App. F, App. G, App. H).

A. Inference Speed vs. Accuracy

Traditional methods like PCA [23] are renowned for their
efficient runtime. However, their accuracy is degraded by in-
herent rotation ambiguities. This often manifests as points on
the same plane exhibiting opposite surface normal directions
(recall Fig. 4 of the main manuscript). Common heuristics,
such as orienting all normals towards a fixed viewpoint or
propagating orientation information via Minimum Spanning
Tree (MST) [23], alleviate this problem but, due to the noisy
nature of LiDAR point clouds, are not particularly effective.

Supervised methods like SHS-Net [31], Du et al. [14],
GraphFit [28], and PCPNet [21] offer substantial perfor-
mance gains, but at the cost of significant computational
overhead. A key limitation of these methods is their reliance
on point cloud partitioning, required during both training and
inference. Furthermore, they often employ point-based back-
bone architectures like PointNet [42] or architectures which
require special operations such as DGCNN [55], which hin-
der efficient processing. Originally introduced to address
the limited dataset size of PCPNet [21] (30 samples), point
cloud partitioning remains necessary during inference, sig-
nificantly increasing processing time, especially for large-
scale datasets like ours, LiSu (approximately 100k points
per frame). Batching partitions is a potential strategy for
accelerating inference. However, GPU VRAM limits batch
sizes, preventing single-frame inference and necessitating
multiple inference passes for batched partitions. Moreover,
PointNet and DGCNN are not optimized for large-scale point
clouds, making it challenging to adapt them to single-frame
training/inference.

Conversely, we leverage the Point Transformer V3
(PTv3) [58], a state-of-the-art transformer architecture build
for large-scale LiDAR point clouds. Their employment of
space-filling curves (e.g. z-order or Hilbert curve) for point
cloud serialization and hardware-optimized operations (e.g.
FlashAttention [9, 10]) enable significant speedups. A single
inference step on a large-scale LiDAR point cloud can be ex-
ecuted in orders of magnitude less time (e.g. 50 milliseconds
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Figure 6. Inference speed vs. accuracy plot for various neural
network-based and traditional methods. Accuracy is calculated
as the average angular accuracy across all thresholds listed in Tab.
2 of the main manuscript: {5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦}.

vs. 20 seconds for DGCNN). PTv3 coupled with our novel
LiSu and training method exhibits exceptional performance
in LiDAR surface normal estimation, requiring significantly
less computational time compared to existing methods, as
visualized in Fig. 6.

B. LiSu Acquisition
To obtain our custom LiSu dataset, we extended the CARLA
simulator (version 0.9.151) built with Unreal Engine 4.262

with an additional LiDAR sensor. This sensor captures not
only standard position and intensity data but also the surface
normal vector of each hit point. We extended CARLA’s ray
caster to return surface normals in the sensor’s frame of
reference and stream this data from the C++ core. This data
stream was collect by the Python front-end and saved to a
file together with the global sensor position and orientation
(required for keyframe transformation in TGTV in Sec. 3.2
of the main manuscript)

We initialize a virtual LiDAR sensor to reflect commonly
employed real-world LiDARs [17, 48]. A detailed configura-
tion of this sensor is presented in Table 5. The virtual LiDAR
sensor was mounted on a self-driving car, randomly placed
within the simulation environment. We populated the simula-

1https : / / github . com / carla - simulator / carla /
releases/tag/0.9.15

2https://github.com/CarlaUnreal/UnrealEngine
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(a) Town02 (b) Town03

Figure 7. Bird’s eye view images of CARLA towns. Images taken from https://carla.readthedocs.io/en/latest/core_
map/#carla-maps

Description Value

Number of lasers 64
Maximum distance to raycast in meters 100
Points generated by all lasers per second 2M
LIDAR rotation frequency 10Hz
Angle of the highest beam 10◦

Angle of the lowest beam −30◦

Horizontal field of view 360◦

Proportion of randomly dropped points 0.45
Std Dev point noise along the raycast vector 0.02

Table 5. Virtual LiDAR attributes used for the data acquisition.

tion environment with approximately 6000 dynamic actors,
such as vehicles (cars, trucks, buses, vans, motorcycles, bi-
cycles) and pedestrians (adults, children, police) as well as
2000 static props (barrels, garbage cans, road barriers, etc.).
Due to the different map sizes (e.g. Fig. 7a vs. Fig. 7b), not
all objects were guaranteed to appear in every simulation.
For each map, we conducted N independent runs, each ini-
tialized with a different random seed. To avoid redundant
frames, we terminated simulations prematurely if prolonged
traffic halts, such as those caused by red lights, occurred. A
detailed breakdown of simulation runs is provided in Tab. 6.

C. Implementation Details of Other Methods

We benchmarked our method against several state-of-the-
art point cloud surface normal estimation methods: PCP-
Net [21], GraphFit [28], Du et al. [14], and SHS-Net [31].
These methods share a common training strategy, origi-
nally proposed in PCPNet, which involves randomly sam-
pling query points and their k-nearest neighbors from each
training sample. While PCPNet’s dataset consists of dense
point clouds, our LiDAR data is significantly sparser. Conse-
quently, we reduced the neighborhood size k to 32 to better

adapt to the sparse nature of our data. Furthermore, given our
larger dataset, we decreased the number of training epochs
to 10 for all methods. All other hyperparameters were kept
consistent with their original settings.

D. Neural Surface Reconstruction

Our experiments in Sec. 4.3 closely replicate existing
benchmarks in neural surface reconstruction from LiDAR
data [22, 66]. In these benchmarks, a mesh reconstructed
from all available LiDAR data is queried with rays generated
from the same data, and the resulting distances are compared
to actual LiDAR measurements. While this approach offers
a convenient evaluation framework, it may not accurately
reflect the method’s true performance, as the same data is
used both in training and evaluation.

Therefore, we propose a more rigorous evaluation pro-
tocol. We randomly split LiDAR points from an entire se-
quence into two disjoint sets: a training and a testing set.
The training split is used exclusively in the training phase.
Subsequently, the reconstructed mesh is evaluated using the
unseen testing set. By ensuring that the training and testing
sets are mutually exclusive, we can better identify model’s
potential limitations.

The proposed evaluation protocol proves particularly chal-
lenging for plain ReSimAD [66], as evident from the mesh
reconstruction in Fig. 8 and LiDAR simulation in Fig. 9.
Limited training data hinders SDF generalization, leading to
poor extrapolation in areas lacking ground truth signals, such
as ridges in the mesh (Fig. 8). This noise propagates to the
LiDAR simulation (Fig. 9), resulting in highly noisy point
clouds. Incorporating surface normals as an additional train-
ing signal mitigates these issues, leading to smoother meshes
and consequently cleaner point clouds. This improvement is
also quantified in Tab. 7
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Figure 8. Mesh reconstruction results comparing plain ReSimAD [66] and our method, which incorporates surface normals estimated from a
model trained on our LiSu dataset and fine-tuned on Waymo Open Dataset [48]. Results are shown for three different Waymo sequences.
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Figure 9. LiDAR simulation results comparing mesh reconstructed with plain ReSimAD [66] (left) and our method, which leverages
estimated surface normals from a model trained on our LiSu dataset and fine-tuned on Waymo Open Dataset [48] (middle). The color scale
represents the deviation from ground truth distance, with blue indicating low error and red indicating high error. The rightmost image shows
the ground truth LiDAR point cloud (used for mesh reconstruction), colored by distance from the sensor (blue: near, red: far).
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Map # Runs # Frames Summary
tr

ai
n

Town01 11 6339 A small, simple town with a river and several bridges.
Town03 11 7658 A larger, urban map with a roundabout and large junctions.
Town05 11 5477 Squared-grid town with cross junctions and a bridge. It has multiple lanes per direction.
Town07 11 5579 A rural environment with narrow roads, corn, barns and hardly any traffic lights.

total 4 44 25 053

te
st

Town02 11 5235 A small simple town with a mixture of residential and commercial buildings.
Town04 5 3591 A small town embedded in the mountains with a special “figure of 8”’ infinite highway.
Town06 11 3980 Long many lane highways with many highway entrances and exits (with Michigan left).
Town12 16 9361 A large map, including high-rise, residential and rural environments.

total 4 43 22 167

va
l Town10 11 2825 A downtown area with skyscrapers, residential buildings and an ocean promenade.

total 1 11 2825

overall 9 98 50 045

Table 6. Summary of our data splits, including CARLA [13] maps, number of randomly started simulation runs, and total number of frames
for the given map. We include the short summary provided by CARLA for each map.

Seq. ReSimAD [66] Ours

1027514 0.68 / 0.15 0.65 / 0.14
1006130 2.55 / 0.23 2.56 / 0.25
1137922 0.95 / 0.77 0.92 / 0.73
1323841 0.51 / 0.11 0.51 / 0.12
1486973 0.83 / 0.16 0.82 / 0.17
1522170 2.05 / 2.70 1.78 / 2.06
1647019 1.01 / 0.70 0.98 / 0.63
3425716 0.70 / 0.22 0.68 / 0.20
9385013 0.52 / 0.20 0.51 / 0.18

average 1.09 / 0.58 1.04 / 0.50

Table 7. We evaluate neural surface reconstruction on diverse
Waymo sequences using Root Mean Square Error (RMSE) / Cham-
fer Distance (CD). Lower values indicate better performance. ReSi-
mAD [66] omits surface normal loss during reconstruction. Ours
is a Waymo model, trained with our proposed self-training frame-
work.

E. Qualitative Evaluation

We conduct a qualitative evaluation on the Waymo Open
Dataset [48] to highlight the benefits of our LiSu. By com-
paring SHS-Net [31] trained on PCPNet [21] to our LiSu, we
demonstrate the significant advantage of leveraging a dataset
tailored to real-world LiDAR point clouds. The lack of pub-
licly available LiDAR datasets underscores the potential
of our LiSu to advance the field, regardless of the specific
method employed. Notably, our self-supervised approach
achieves impressive results when applied to a real-world
dataset like Waymo, as visualized in Fig. 10.

F. Loss-Regularization Trade-off
In the following section, we present an ablation study to
substantiate our selection of the γ parameter (Eq. (7) of
the main manuscript), which balances loss minimization
and regularization. To expedite the training and evaluation
phases, we utilized 50% and 20% subsets of the original
training and evaluation data, respectively.

The hyperparameter γ balances the trade-off between
noise and smoothness in the final predictions. Lower values
of γ encourage the model to prioritize edge preservation,
potentially leading to noisier predictions. Conversely, higher
values of γ promote smoother predictions, which may result
in the loss of fine-grained details and edge information. In the
extreme case, when γ = 1, the model’s predictions become
almost entirely smooth, with minimal edge detection. In our
experiments, we found that γ = 0.1 provided an optimal
balance between noise and detail, as illustrated in Fig. 11.

G. k Neighborhood Graph Ablation
To construct the k-neighborhood graph G for both Spatial
Graph Total Variation (SGTV) and Temporal Graph Total
Variation (TGTV) (Sec. 3.2), we require a hyperparameter k
to specify the size of the local neighborhood. In the following
experiments, we fix γ = 0.1 and systematically vary k to
assess its influence on the model’s overall performance. To
expedite the training and evaluation phases, we utilized 50%
and 20% subsets of the original training and evaluation data,
respectively.

The parameter k controls the model’s output smoothness,
with higher values leading to increased smoothing and poten-
tial loss of detail (e.g. k = 32 in Fig. 12). Conversely, smaller
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(a) SHS-Net [31] trained on PCPNet [21]

(b) SHS-Net [31] trained on our LiSu

(c) Direct transfer with our method

(d) Unsupervised domain adaptation from LiSu to Waymo with our method

Figure 10. Qualitative comparison of SHS-Net [31] directly transferred from PCPNet [21] (a) and our LiSu dataset (b). Our dataset, tailored
for LiDAR surface normal estimation, yields superior results. Additionally, we demonstrate the effectiveness of our method for both direct
transfer (c) and self-supervised domain adaptation (d) on a challenging Waymo Open Dataset frame.

values of k (e.g. 4) may not provide sufficient smoothing,
resulting in noisy outputs. As Fig. 12 illustrates, k = 8 offers
a favorable balance between smoothness and detail preserva-
tion. As a general guideline, we recommend setting k to the
median number of points within a 0.1-meter radius around
each point in the input data.

H. Weighted Adjacency Matrix Ablation
Edge weights in our graph G for both SGTV and TGTV
(Sec. 3.2 of the main manuscript) are computed using an
exponential decay function,

w(x) = exp

(
−x2

σ2

)
, (8)
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Figure 11. Average angular accuracy (↑) computed across thresh-
olds {5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error
(↓) calculated across mean, median and RMSE, for varying γ.
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Figure 12. Average angular accuracy (↑) computed across thresh-
olds {5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error
(↓) calculated across mean, median and RMSE, for varying k.

where x represents the Euclidean distance between two graph
nodes (i.e. points). The decay constant σ determines the rate
at which the edge weight decreases with increasing distance.
We depict the influence of different σ in Fig. 13.

To study the impact of the hyperparameter σ, we con-
ducted an ablation study with γ = 0.1 and k = 8, varying
σ across multiple runs. For efficiency, we used 50% of the
training data and 20% of the evaluation data. Results showed
that smaller σ values produce sparse graphs, reducing regu-
larization, while larger values introduce noise by connecting
distant points, potentially belonging to different surfaces (e.g.
0.2 meters apart). Empirically, σ = 0.1 was found optimal,
as shown in Figure 14.
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Figure 13. Effect of the decay constant σ on edge weights for
different distances x in meters.
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Figure 14. Average angular accuracy (↑) computed across thresh-
olds {5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error
(↓) calculated across mean, median and RMSE, for varying σ.
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