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Abstract

Widely-used LiDAR-based 3D object detectors often ne-
glect fundamental geometric information readily available
from the object proposals in their confidence estimation.
This is mostly due to architectural design choices, which
were often adopted from the 2D image domain, where geo-
metric context is rarely available. In 3D, however, consid-
ering the object properties and its surroundings in a holistic
way is important to distinguish between true and false pos-
itive detections, e.g. occluded pedestrians in a group. To
address this, we present GACE, an intuitive and highly effi-
cient method to improve the confidence estimation of a given
black-box 3D object detector. We aggregate geometric cues
of detections and their spatial relationships, which enables
us to properly assess their plausibility and consequently,
improve the confidence estimation. This leads to consistent
performance gains over a variety of state-of-the-art detec-
tors. Across all evaluated detectors, GACE proves to be
especially beneficial for the vulnerable road user classes,
i.e. pedestrians and cyclists.

1. Introduction

Three-dimensional perception of surrounding objects is
a critical component for autonomous vehicles and robots.
Many modern perception systems use point cloud data from
LiDAR (Light Detection and Ranging) sensors for this task,
since they can provide accurate 3D information even over
long distances. The popularity of these sensors can be seen
in the increased research interest in LiDAR-based 3D object
detection approaches, e.g. [10,29,38,40,45,47] and the large
number of recently published autonomous driving datasets
that include LiDAR data, e.g. [1,6,20,33].

However, the characteristics of LiDAR data impose sig-
nificant challenges for object detection. Unlike pixels in an
image, which are aligned in a regular grid, point clouds rep-
resent 3D data as a collection of individual points in space,
each with its own set of coordinates. In addition to the un-

Figure 1.
tecting true positive objects confidently if the sampling pattern is
atypical, e.g. the occluded pedestrian in the orange bounding box
(close-up top-left). GACE exploits the geometric properties of the
detection and its surrounding objects to significantly increase the
score for this detection, which is intuitively correct for a human
observer considering this scene.

structured nature of the data, the highly variable point den-
sity poses a major challenge. Due to the angular offset of
the LIDAR beams, the density is highly dependent on the
distance to the object and can be altered by occlusions in
the foreground. This often requires detecting objects based
on very few data points, which is especially true for classes
with smaller spatial dimensions, such as pedestrians and cy-
clists. For example, in the Waymo Open Dataset [33], one
of the most widely used and challenging datasets to date,
about 30 percent of all annotated pedestrians consist of less
than merely 20 points. Detecting these sparsely sensed ob-
jects naturally leads to a large number of false positive de-
tections at test time. For this reason, determining a mean-
ingful confidence value for the detections is critical to find
a trade-off between precision and recall that adequately dis-
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tinguishes true positives from false positives. The poten-
tial that could be exploited by improving the confidence
score is considerable: Suppose we have an oracle that could
correctly classify the detections of a SECOND [38] model
on the Waymo dataset into true and false positives. This
would increase the LEVEL_1 average precision for vehicles
by +3.96AP and, more importantly, for pedestrians and cy-
clists by as much as +10.71AP and 413.74AP, respectively.

Existing 3D object recognition pipelines, including con-
fidence estimation approaches, were largely inspired by 2D
image-based object recognition models and then gradually
adapted to point cloud processing. However, the conven-
tional backbone - neck - head architecture of the 2D detec-
tion model was largely retained, e.g. in [8, 10, 15,27, 38,

]. After extracting features (point-based, voxel-based, or
region-based) over multiple levels in the backbone, they are
fused in the neck module and then passed to the detection
head, where bounding box regression and confidence es-
timation are performed on a dense feature representation.
Typically, separate branches are used within the head for
bounding box regression and confidence estimation, each
consisting of one or more fully connected layers on top of
the common feature representation.

Unlike image-based object detection, there are several
highly relevant geometric properties inherent to objects
in 3D point clouds that have been largely unexploited
in assessing the confidence of a detection. In the image
case, it is usually not possible to easily derive geometric
properties for the objects, such as height or orientation,
unless a static and fully calibrated camera and a known
or constant scene are given. In contrast, in 3D object
detection, many geometric features are directly available in
the object properties and associated 3D data points to better
assess the presence of a real object. On the one hand, these
are instance-specific properties, such as the dimension
of the object, the heading direction, the position, or the
point distribution within the bounding box. For example, as
shown in Figure 2, the precision of a SECOND [38] model
for detecting a vehicle is highly dependent on the size of
the object and from which side it is detected by the LiDAR.
It can be seen that vehicle categories between passenger
cars and heavy duty vehicles (i.e. vehicles with a length
of 6 to 13m) are harder to detect, potentially because they
are underrepresented in the dataset, and that vehicles are
easier to detect from behind (i.e. viewing angle between
+45 degrees), presumably because of the highly reflective
license plates, as shown in [25]. On the other hand, contex-
tual properties, i.e. geometric relationships to neighboring
objects, can contribute to a more reliable estimation of
the confidence. For example, as shown in Figure 1, a
pedestrian that appears atypical due to occlusions can be
assessed more reliably by additionally taking neighboring
vehicles and pedestrians into consideration.
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Figure 2. Precision of a SECOND [38] model for the Waymo [33]
vehicle class as a function of the object length (top) and of the
viewing angle (bottom), indicating from which side the vehicle is
seen by the LiDAR, where 0 degrees corresponds to the rear view.
These examples illustrate the strong dependence of the precision
on simple geometric object properties.

Nevertheless, these simple but highly informative met-
ric properties are neglected when estimating the confidence
score in current detector architectures for the following rea-
sons: First, in grid-based models, information such as the
exact point distribution within the bounding box or the num-
ber of points is already partially discarded by the discretiza-
tion (voxelization) in the preprocessing phase. Second, the
bounding box properties (object dimensions & rotation) are
determined in the parallel and separate box regression head
and are therefore not accessible to the confidence estimation
head. Finally, confidence estimation is usually performed
using only features within a small area around the object
(depending on the receptive field and detector), and no ex-
plicit information about neighboring objects and their geo-
metric properties or confidence values is used, preventing a
holistic estimation.

Inspired by these observations, we present GACE, an in-
tuitive and highly effective method to improve the confi-
dence estimation of any black-box detector using geometric
information. Given a set of detections from the base de-
tector, we explicitly use these neglected features to enhance
the expressiveness of the confidence values with the help
of these additional cues. Our model-agnostic approach is
intentionally applied after the actual detector training pro-
cess to perform an auxiliary geometric assessment inde-
pendent of the initial features. In a detailed evaluation on
the Waymo dataset, we show that GACE consistently im-
proves the performance of several state-of-the-art detection
pipelines. Furthermore, we demonstrate the generalizabil-
ity and transferability of our method by applying it to other
datasets and even other detectors. Without retraining them,
we achieve highly compelling performance gains.
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2. Related Work

LiDAR-based 3D Object Detection: Depending on how
existing methods for 3D object detection in single frame
LiDAR data deal with the unstructured nature of point
clouds, they can be broadly categorized into point-based,
grid-based, and hybrid approaches.

Point-based methods extract information directly from the
individual raw 3D points [23,24,30,32,40,44]. The pioneer-
ing works, PointNet [23] and PointNet++ [24], used shared
multilayer perceptrons in combination with global pooling
functions to directly extract features from the irregular point
cloud data. In Point-RCNN [30] features extracted in this
manner are used to segment foreground points and generate
proposals based on them. The advantages of point-based 3D
object detectors are that there is no loss of point information
due to discretization and the large receptive field, but at the
cost of high computational demands.

Instead of processing the points directly, grid-based
methods [4, 15, 21, 27, 34, 38, 39, 43, 46] discretize the
non-uniform 3D points into regular grids that can then be
processed with 2D/3D convolutions. Voxelnet [46], a pi-
oneering method, divides the point cloud into uniformly
spaced 3D voxels, aggregates information from the points
within them and generates predictions using 3D convolu-
tions. To better handle the large number of empty voxels,
SECOND [38] introduced sparse 3D convolutions. To re-
duce complexity, PointPillars [15] and PillarNet [27] use a
2D grid on the ground plane to create a column represen-
tation, a single pillar-shaped voxel per location, that can be
processed using 2D convolutions. As an alternative to such
anchor-based methods, Centerpoint [43] predicts a bird’s-
eye view heat map and detects the object center using a
keypoint detector. Recently, transformer-based backbones
have also been used to enable long-range relationships be-
tween voxels [5,21,34,47]. Object relations within a frame
and across multiple frames are mapped by Ret3D [37] us-
ing a graph and a transformer. The advantage of grid-based
methods is that they can process data faster due to the reg-
ular format, but are limited by the loss of point information
during the initial discretization phase.

In order to obtain both, multi-scale features and
fine-grained information, hybrid methods process voxel
and point information jointly [22, 26, 28, 29, 31, 41, 42].
PV-RCNN [28], uses a set abstraction module that com-
bines surrounding point and voxel features at keypoints
to improve the detections. Part-A2 [31] predicts the
position of parts within an object based on point features
to improve the accuracy, while LiDAR R-CNN [17] uses
features of a PointNet [23] model that processes points
within and around box proposals. Pyramid R-CNN [19]
creates point features using a pyramid grid structure to
acquire fine-grained and long-range contextual information.

Confidence Estimation: In the usual backbone - neck -
head detector architecture, after the feature extraction and
aggregation, the box regression and confidence estimation
are performed. This is usually done in two separate
branches based on a common dense feature representa-
tion [15, 38,40, 46]. This has the disadvantage that the
accuracy of the localization is hardly included in the
confidence score. Inspired by 2D object detection meth-
ods[11,12,36], IoU guided supervision is frequently used to
obtain a better correlation between the classification result
and the localization accuracy [9, 10, 16,27,28,31,41,45].
Thereby, the IoU between the predicted box and the
ground truth is learned in a third branch during training
and then incorporated into the final confidence score at
test time. Hu ef al. [9] leverage the inherent relationship
between object distance and point density to better assess
a detection. Inspired by the 2D approach [3], a spatial
transformation on the feature maps is done by He et al. [§]
to better align the confidence prediction and bounding
box regression. Related to confidence estimation are
also calibration methods [7, 14] where the score should
represent a true probability, i.e. how likely a detection is.
Detection pipelines, however, aim at the best separation
of true and false positives as optimization goal for the
confidence prediction.

In our confidence estimation method we also pursue
this optimization objective, but in contrast to existing ap-
proaches, we present a method for refining the confidence
values for a given set of detections by exploiting the rich
geometric information contained directly in the detections
as well as in the underlying 3D points. While these useful
cues for assessing the plausibility of a detection have been
largely untapped due to the architecture of common detec-
tion pipelines, they allow us to increase the expressiveness
of the confidence values.

3. Geometry-Aware Confidence Enhancement

Our goal is to optimize the confidence scores for a
given set of detections from a base detector in order to
better separate true positives from false positives, thus
increasing the overall detection performance. We use
the detector in a pure black box manner, i.e. we do not
assume any knowledge about the architecture of the base
model, nor access to its internals like parameters, features
or gradients. This black-box optimization, taking only the
point cloud and the set of objects detected in it as input,
enables universal applicability and easy transferability of
our enhancement module to any base 3D object detection
pipeline. The basic idea is to revalidate the detections by
exploiting as much as possible the geometric information
they inherently contain.
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Figure 3.

Schematic of GACE: To re-evaluate the confidence score of a detection (orange), we aggregate geometric properties of the

detection itself and the points it contains into a feature vector (top). To capture the context of the detection, geometric relationships to
neighboring detections are aggregated using a shared MLP and subsequent pooling function (bottom). By merging both features (right),
we obtain a new confidence score that takes into account the underlying geometric properties of the detection.

In our proposed approach called GACE (Geometry
Aware Confidence Enhancement) we exploit two types of
geometric information, as shown in Figure 3:

¢ Instance-specific Geometric Properties (Sec-
tion 3.1): Attributes of the bounding box itself,
combined with the point data inside. For example,
how well is the size of the object or the heading angle
supported by the point distribution?

¢ Contextual Geometric Properties (Section 3.2): Re-
lationships to surrounding objects can provide useful
information to better validate an uncertain detection,
e.g., a partially occluded vehicle moving in the same
lane and same direction as the surrounding vehicles.

These useful cues to estimate the plausibility of an object
are usually not used for the confidence estimation in com-
mon detection pipelines. The reasons are that information
is often already discarded during preprocessing (discretiza-
tion), essential properties such as the estimated size of the
object are not available (separate box regression in a par-
allel branch), or the objects are only evaluated individually
and not more holistically. Therefore, we explicitly use these
easily accessible and rich sources of information as input
to our enhancement module. After merging the instance-
specific and contextual features, we determine the new con-
fidence value of each proposed object via an auxiliary task
(Section 3.3).

To generate the training data for our enhancement
module, we use the black-box base model in a single
inference run on the training set. The resulting set of all

detections from the base model represents the training data
to learn our improved confidence estimator. Formally, this
can be described as follows.

Definitions & Notations: Let X = {Xk}r=1..K be
a LiDAR point cloud, where each of the K unordered
points X € R® consists of the 3D coordinates, inten-
sity/reflectance and the elongation value. Furthermore, let
Y = {¥y:};=1...m be the set of corresponding ground truth
objects. Each object annotation y = [B,;Tﬂ includes the
bounding box parameters b = [Ex,5y752,dvm,§y,dvz,(:)]
and the corresponding class label y. For a given black-box
3D object detector F, let F'(X) = Y ={y,_, n} be the
set of proposed detections for this input point cloud, where
y = [b,y,s]. In addition to the box properties b and the
corresponding class label y, the detector predicts a confi-
dence value s that should ideally indicate the prevalence of
a true positive example.

Confidence Optimization: Based on the known ground
truth objects, a category label {u; € {0,1}};=1.. n can be
assigned to each detection, indicating whether it is a true
positive or false positive detection. Moreover, we know the
IoU with a possible ground truth bounding box for each ob-
ject which we define as {v; },=1... . We aim to improve the
confidence estimate of the original detector by focusing ex-
clusively on the binary classification of detections into true
positive and false positive examples. We determine the re-
vised confidence score {5;} = H(), X') using our module
H, where onlx the set of detections ) and the points they
include X C X are used as input.
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3.1. Instance-specific Geometric Properties

In common 2D and 3D object detection architectures,
the bounding box regression and the confidence estimation
are performed completely separated in different branches.
This is well suited for 2D where it is desired to detect
objects in the image regardless of their scale. For 3D,
however, important cues for plausibility estimation remain
largely unused. Let us consider the available context
directly provided by an object proposal: The position of
the possible object in combination with the dimensions in-
dicates, for example, which point density is to be expected.
Furthermore, the direction angle provides an indication
of the expected point distribution within the box. This
information can even be further refined by knowing the
class of the object. This directly available geometrical
knowledge about an object allows for a more profound
estimation of the confidence score.

We extract these basic properties and transform them
into a compact representation using a multilayer perceptron
(MLP) H;. As input parameters, we first use the object pa-
rameters, i.e. the position (cg, ¢y, ¢;), the size (d,d,,d.),
and the heading angle © of the bounding box, as well as the
initial confidence value s; of the detection estimated by the
base detector. Additionally, we use the distance ||c|| from
the LiDAR sensor to the object center, and the angle « be-
tween the line of sight to the object and the heading angle
of the object:

a =0 —atan2(cy, ¢z). (1

This angle describes from which side an object is seen from
the LiDAR center, independent of the position of the ob-
ject relative to the LiDAR, e.g. a vehicle driving directly
towards the LiDAR always has the same angle o, no matter
from which direction the vehicle approaches. We comple-
ment these cues with information about the points Ay, C X
inside the bounding box b. Besides the overall number
of points |X}|, we extract elementary low-level statistics.
Therefore, we scale the box and the associated points to
a uniform size and then align them w.r.t. their center and
yaw angle. In this canonical representation we compute the
mean, standard deviation, minimum and maximum of A},
for all axes, denoted as A, Xt ymin, ymax - We then
aggregate these attributes into one feature vector represent-
ing the instance-specific plausibility per object as

£ = 1y ([bra el 1], e, a5, g, ] '

i
2
where we pass all angles as direction vectors (cos(+), sin(+))
and normalize all metric properties to unit length using the
corresponding maximum value range.

3.2. Contextual Geometric Properties

Especially in the case of uncertain detections, e.g.
detections that are far away and therefore consist of only
a few 3D points, or detections that are partially occluded
and therefore appear atypical, geometric contextual infor-
mation can be very useful in assessing a confidence score.
Examples include a vehicle that is heavily occluded but
in a convoy with other vehicles, or cyclists moving in a
group. However, this information is usually not available
for the confidence estimation, since the object proposals are
evaluated individually within the receptive field but without
explicit knowledge of the objects detected in its vicinity
and their properties. In order to assess the plausibility of
a detection y in a more holistic way, we use the geometric
relations to surrounding objects in the scene. We thereby
consider all neighbors that are within a certain radius r
around the object to be evaluated.

We therefore create a representation per object, which
captures the relationships to its neighboring objects. In or-
der to be independent of the number of neighboring objects,
we first create a feature vector for each neighbor, which we
then combine into a unified representation using a symmet-
ric pooling function. As input parameters per neighbor we
use the distance to the object to be evaluated ||c — ¢, ]|, the
direction vector c—c,,, the difference between the two head-
ing angles © — ©,,, and the neighbor’s class label y,,. To in-
corporate the validity of the neighbor, we leverage f1, which
represents the instance-specific properties of the neighbor.
This information is encoded via the shared weight MLP H~
to form the feature vector fnc for each individual neighbor,

T
f',? = HC (“|C - CnHaC - C7L7® - @THynafrIJ ) B (3)

where the angle © — ©,, is provided as direction vector and
the metric features are normalized to unit length.

Finally, we aggregate the information from the indi-
vidual neighbors into a unified representation for later
processing, as shown in Figure 3. This requires accu-
mulating features of an unknown (and varying) number
of neighbors. To impose no constraint on the number of
features, we take inspiration from the pooling step of point-
based detectors, e.g. [23], and employ a symmetric max
pooling function to form a plausibility signature £ over the
feature vectors of all neighbors. Thus, in this representation
the geometric relations to the surrounding objects are accu-
mulated for the subsequent confidence estimation, taking
into account the respective local properties of the neighbors.
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3.3. Data Fusion & Confidence Prediction

To estimate the new confidence value for a detection, we
merge the instance-specific and contextual geometric fea-
tures. The instance-specific information encoded in f I as
well as the contextual information in f¢ are concatenated
and processed using Hr, a MLP with sigmoid output func-
tion, to estimate the new confidence score

s=He ([£7,6]7). )

We train the whole module including the two feature en-
coding networks H; and H¢ using an end-to-end training
strategy. As loss function Leone(5, 1) for this task we use
the focal loss [18] to focus learning on hard examples. The
goal is to divide the set of detections as good as possible
into true or false positive examples using the binary cate-
gory label u € {0,1} as target. As auxiliary task during
training we estimate the IoU with the ground truth bound-
ing box in a further output ¥ of Hp. Therefore, we add
an ToU-guidance [16,41,45] L1-loss term Ly,y(0,v). This
increases the importance of the point distribution statistics
within the features, as they provide evidence of the bound-
ing box accuracy from which the confidence estimate also
benefits. The overall loss function is therefore

L= [-"COHf(ga u) + Au Liou (67 U)7 )

where Aoy is a hyper-parameter to adjust the influence of
the auxiliary task.

4. Experiments

To demonstrate the benefits of GACE, we evaluate our
black-box confidence optimization method on several well-
known state-of-the-art 3D object detection pipelines. In
particular, we apply it to the pillar-based PointPillars [15],
the voxel-based SECOND [38] and Centerpoint [43], as
well as the hybrid methods Part-A% [31], PV-RCNN [28]
and PV-RCNN++ [29].

Datasets: For the evaluation of our approach we use
the Waymo Open Dataset [33] as well as the KITTI
Dataset [6]. The Waymo dataset is one of the largest and
most challenging public datasets for autonomous driving
research. It provides 798 training scenes and 202 validation
scenes, where each scene consists of about 200 LiDAR
samples covering the full 360° field-of-view. In total, the
dataset consists of over 8.9M annotated objects classified
into vehicles, pedestrians and cyclists. We follow the
common evaluation protocol using the standard metrics
average precision (AP), as well as average precision with
heading (APH), where true positives are weighted by their
heading accuracy. In addition, we use the KITTI dataset,
one of the most popular datasets for 3D object detection.

We thereby use the standard split [2] into a training set
(3712 samples) and validation set (3769 samples). We
also follow the common evaluation practice using average
precision with 40 recall points. For both datasets, the 3D
IoU threshold for a true positive sample is 0.7 for vehicles
and 0.5 for pedestrians and cyclists.

Implementation Details:  Our experimental setup' is
based on the open-source toolbox OpenPCDet [35]. To en-
sure the reproducibility of our results, all base models used
in the experiments have been trained on the training set us-
ing the default configuration and default training policies
of OpenPCDet. This includes augmenting the data by ran-
domly rotating, scaling and flipping the point cloud, as well
as ground truth sampling [38], i.e. the placement of objects
from other training examples in the current frame. To cre-
ate the training data for our module, we use the base model
as a black-box detection pipeline. In a single inference run
on the training set, we collect the output of the base model,
i.e. the set of all detections, which represents our training
data. The actual training process of our module is therefore
entirely decoupled from the base model.

Our sub-networks for feature transformation, i.e. H; and
the shared network H ¢, as well as the confidence prediction
network Hp are two-layer MLP’s with 256 feature dimen-
sions. The feature vector f! in which the instance-specific
information is encoded is 128-dimensional and f¢ for the
contextual information is 64-dimensional. When determin-
ing the contextual geometric properties, we accumulate the
neighboring objects that are within a radius of » = 40m.

We train our model end to end with the Adam [13] op-
timizer and a learning rate of 0.001. The weighting of the
auxiliary loss term during training is set to A,y = 0.5. In
all experiments we use the same architecture as well as hy-
perparameters, regardless of the underlying black-box base
model. We train our module over 5 epochs on a single
NVIDIA® GeForce® RTX 3090 GPU, which takes less than
10 minutes due to our favorable lightweight model size and
low feature dimensions.

4.1. Main Results

Table | summarizes the results of our confidence opti-
mization on the Waymo dataset for different baseline de-
tection pipelines. For each detector architecture, we report
the performance of the base detector as well as the results
after applying our GACE module. Please note that for bet-
ter traceability, the results of the base detectors correspond
to the respective OpenPCDet implementations (see Open-
PCDet modelzoo). Some reported baseline scores are even
higher than in their original papers due to augmentation
techniques used in OpenPCDet.

lhttps://qithub.com/dschinaql/qace
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Overall Vehicles (IoU=0.7) Pedestrians (IoU=0.5) Cyclists (IoU=0.5)

Method LEVEL_1 LEVEL_2 LEVEL._1 LEVEL_2 LEVEL_1 LEVEL2 LEVEL_1 LEVEL_2

mAP mAPH mAP mAPH| AP APH AP APH| AP APH AP APH| AP APH AP APH
PointPillars [15] 64.72 57.07 58.57 51.73 [70.99 70.35 62.79 62.20|66.36 47.15 58.27 41.32|56.81 53.71 54.66 51.67
+ GACE (Ours) 69.25 61.24 6298 5573 |71.92 71.28 63.63 63.04|72.18 51.97 64.06 45.96|63.64 60.47 61.25 58.20
Improvement +4.53 +4.17 +4.41 +4.00 | +0.93 +0.93 +0.84 +0.84 | +5.82 +4.82 +5.79 +4.64 | +6.83 +6.76 +6.59 +6.53
SECOND [38] 65.13 60.81 59.01 55.12 |70.93 70.30 62.65 62.07 | 65.67 54.96 57.78 48.25|58.78 57.18 56.59 55.05
+ GACE (Ours) 70.17 66.13 63.74 60.06 | 71.56 70.92 63.22 62.63|71.71 61.87 63.27 54.37 |67.22 65.59 64.73 63.16
Improvement +5.04 +5.32 +4.73 +4.94 | +0.63 +0.62 +0.57 +0.56 | +6.04 +6.91 +5.49 +6.12 | +8.44 +8.41 +8.14 +8.11
Part-AZ [31] 70.30 66.66 63.53 60.27 |73.35 72.81 64.73 64.24|70.02 61.01 60.83 52.85|67.53 66.18 65.03 63.73
+ GACE (Ours) 73.07 69.21 66.24 6277 |73.99 73.43 65.38 64.87|72.36 62.93 63.21 54.81|72.84 7128 70.13 68.63
Improvement +2.77 +2.55 +2.71 +2.50 | +0.64 +0.62 +0.65 +0.63 | +2.34 +1.92 +2.38 +1.96 | +5.31 +5.10 +5.10 +4.90
Centerpoint [43] 73.01 7035 66.79 64.33 |72.87 72.33 64.76 64.27 |74.48 68.22 66.55 60.81|71.69 70.50 69.06 67.92
+ GACE (Ours) 75.58 7298 69.19 66.76 | 74.49 7399 66.19 65.73|78.62 7248 70.44 64.73|73.64 7248 70.94 69.83
Improvement +2.57 +2.63 +2.40 +2.43 |+1.62 +1.66 +1.43 +1.46 | +4.14 +4.26 +3.89 +3.92 | +1.95 +1.98 +1.88 +1.91
PV-RCNN [28] 71.11 66.78 64.40 60.50 | 74.79 74.17 66.17 65.61|72.06 61.46 63.00 53.56|66.48 64.72 64.03 62.34
+ GACE (Ours) 73.38 68.89 66.65 62.57 |75.20 74.55 66.57 65.97|73.84 6297 64.88 55.14|71.12 69.16 68.50 66.60
Improvement +2.27 +2.11 +2.25 +2.07 |+0.41 +0.38 +0.40 +0.36 | +1.78 +1.51 +1.88 +1.58 | +4.64 +4.44 +4.47 +4.26
PV-RCNN++ [29] || 75.72 73.05 69.22 66.73 | 77.30 76.81 68.92 68.47|78.91 7242 70.43 64.41|70.95 69.90 68.31 67.31
+ GACE (Ours) 76.76 74.02 7031 67.75 |77.42 76.93 69.05 68.59|79.59 72.97 7134 65.18|73.26 72.16 70.54 69.48
Improvement +1.04 +0.97 +1.09 +1.02 | +0.12 +0.12 +0.13 +0.12 | +0.68 +0.55 +0.91 +0.77 | +2.31 +2.26 +2.23 +2.17

Table 1. Performance comparison on the Waymo Open Dataset [
confidence enhancement module GACE.

For all baseline detectors and all classes, adjusting
the confidence level with our approach leads to an in-
crease in performance without exception. The overall
performance gains range from +1.02mAPH (LEVEL_2)
for PV-RCNN++ to +4.94mAPH (LEVEL_2) for SEC-
OND, demonstrating the significance of this geometric
information in estimating a confidence score for a detection.

Object Classes: The performance improvements are sig-
nificantly higher for the classes of pedestrians and cyclists.
Intuitively, objects of these vulnerable road users contain
significantly fewer 3D points due to their smaller spatial ex-
tent compared to vehicles. This effect is even aggravated by
possible occlusions. Furthermore, the class of cyclists in
particular is underrepresented in the training data. These
properties make objects of these classes more difficult to
detect, which leads to a higher number of false positives,
but also makes confidence estimation more complex. Espe-
cially in these cases, our confidence enhancement method
benefits from the additional geometric information when
separating false positives from true positives, resulting in
a higher impact of GACE.

Base Detectors: The overall performance gain is high-
est when applying GACE on pillar-based (PointPillars [ 15])
and voxel-based methods (SECOND [38] and Center-
point [43]). These methods lose valuable point information
already in their preprocessing stage, i.e. by voxelization.
Thus, the optimization potential for these methods is higher
than for the hybrid methods, which explicitly incorporate
point-level information at detection locations. However, by
explicitly exploiting both instance-specific and contextual
geometric properties of the detections, GACE also leads to

] validation set for different baseline methods with and without our

a significant performance improvement for these methods,
i.e. Part-A% [31], PV-RCNN [28] and PV-RCNN++ [29],
most notably for the classes of pedestrians and cyclists.

Precision/Recall Plots: To better illustrate the impact of
our method, Figure 4 shows the precision/recall plots be-
fore and after applying GACE with a SECOND [38] model
as the base detector (See the supplemental material for the
other base detectors). Since recall remains unaffected, the
significant performance gains of GACE are entirely due
to an increase in precision. The better separation of true
and false positives is mainly seen in the more challenging
classes of pedestrians and cyclists, where the number of
false detections is significantly higher and confidence es-
timation is more difficult. Furthermore, we see that the pre-
cision gains are higher in regions of higher recall, i.e. for
detections with a lower confidence score. Especially these
initially underrated detections of objects of the vulnerable
classes represent a safety risk that can be reduced by GACE.

Range-based Evaluation: Table 2 summarizes our evalu-
ation across the different distance ranges of Waymo. This
also shows that GACE can consistently improve the perfor-
mance of all baseline detectors and in all sub-ranges, espe-
cially in the far range. Detections at long distances are more
challenging due to the lower point density, making it harder
to distinguish true positives from false positives. Therefore,
the geometric information is even more valuable in these
cases, e.g. from +2.93mAPH (LEVEL_2) for PV-RCNN++
up to +4.97mAPH (LEVEL_2) for PointPillars. The de-
tailed evaluation results for all subclasses can be found in
the supplemental material.
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Figure 4. Precision-recall plots for a SECOND [

Waymo Open Dataset [

positives leads to higher precision.

] model as base detector with and without our confidence enhancement module on the

Overall (LEVEL_2)

Method 0-30m 30-50m 50m-Inf

mAP/mAPH mAP/mAPH mAP/mAPH
PointPillars [15] 75.10/67.59 55.31/48.53 37.18/31.00
+ GACE (Ours) 78.32/70.68 60.17/53.01 42.88/35.97
Improvement +3.22/+43.09 +4.86/+4.48 +5.70/+4.97
SECOND [38] 75.55/71.87 56.55/52.42 37.73/33.39
+ GACE (Ours) 78.64/75.39 60.10/56.13 41.69/37.39
Improvement +3.09/+43.52 +3.55/+3.71 +3.96/ +4.00
Part-A? [31] 79.93/76.93 61.77/58.01 40.13/36.44
+ GACE (Ours) 81.62/78.52 64.63/60.59 45.06/40.94
Improvement +1.69/+1.59 +2.86/+2.58 +4.93/+4.50
Centerpoint [43] 81.29/79.12 65.45/62.66 46.45/43.27
+ GACE (Ours) 82.94/80.90 67.56/64.76 50.20/46.80
Improvement +1.65/+1.78 +2.11/+2.10 +3.75/+3.53
PV-RCNN [28] 79.77/76.24 62.57/58.10 42.51/37.77
+ GACE (Ours) 81.25/77.66 64.76/60.11 47.01/41.90
Improvement +1.48/+1.42 +2.19/+2.01 +4.50/+4.13
PV-RCNN++ [29] || 83.08/80.98 67.86/65.04 48.69/45.26
+ GACE (Ours) 83.59/81.43 68.69/65.83 51.81/48.19
Improvement +0.51/+0.45 +0.83/+0.79 +3.12/+2.93

Table 2. Consistent performance gains on the Waymo Open
Dataset [33] validation set across distance ranges for different
baseline methods for LEVEL_2 over all classes.

4.2. Ablation Studies

Main Components: We evaluate the contribution of our
proposed instance-specific and contextual properties as well
as the influence of the auxilary IoU loss for a SECOND [38]
model as baseline in Table 3. Incorporating the instance-
specific geometric properties already leads to a significant
performance increase of +3.65AP/+3.32APH. Including
also the contextual information, i.e. incorporating the rela-
tionships to the neighboring detection hypotheses further
increases the performance by another +0.71AP/+1.14APH.
Compared to the contributions of these two components,
there is only a minor impact of incorporating the IoU
guidance, leading to additional +0.37AP/+0.48APH. Note
that the degradation when adding L,y to only contextual
features is caused by the lack of point information, which
does not allow a reasonable estimation of the IoU. Overall,
the instance-specific geometric information contributes
stronger than the contextual geometric information.

] validation set for LEVEL_2 APH. Especially at higher recall levels, GACE’s better separation of true and false

. Instance Aux-Loss LEVEL 2 LEVEL.2
Baseline . Contextual

pecific ToU mAP mAPH
v 59.01 55.12
v v 62.66 58.44
v v 60.33 56.90
v v v 63.37 59.58
v v v 62.94 58.78
v v v 60.19 56.77
v v v v 63.74 60.06

Table 3. Ablation experiments for a SECOND [38] model as

base detector over all classes on the Waymo Open Dataset [33]
validation set. We show the impact of each GACE component.

Box Properties ‘ # Points ‘ Viewing Angle ‘ Point Stat.

Table 4. Impact of the different instance-specific feature groups
when used exclusively for a SECOND model as base detector on
the Waymo Open Dataset [33] over all classes (LEVEL_2 mAPH).

Instance-Specific Properties: We analyze the contribu-
tion of each feature group within the instance-specific
properties, namely box properties (b, ||c|), number
of points (|Xp]|), viewing angle («), and point statis-
tics (Ajmean psud ymin ymax) - Table 4 shows the impact
of each group on the overall performance when used
exclusively, indicating a high contribution of box properties
and point statistics. A complete list of the combinations
can be found in the supplemental material.

Contextual Properties Radius: The dependence of the
performance on the chosen context radius r is shown in Fig-
ure 5. It can be seen that the performance increases signifi-
cantly up to ~ 15m, followed by a slight degradation start-
ing at ~ 40m, which illustrates the importance of neighbor-
ing objects in the near and middle ranges.
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Figure 5. Performance of purely context-based GACE for different
radius r (SECOND base model / Waymo overall).

Method Car Pedestrian | Cyclist
SECOND (KITTT) 81.61 51.14 66.74
+GACE (SECOND Waymo) | 82.04%-43 | 57.11+5-97 | 70.99+4.25
PointPillars (KITTI) 78.39 51.41 62.94
+GACE (SECOND Waymo) | 78.51%0-12 | 55 30+3-89 | 67.94+5:00
Part-AZ (KITTI) 82.02 59.73 70.10
+GACE (SECOND Waymo) | 82.94+0-02 | 64 21448 | 79 16+2.06
PV-RCNN (KITTI) 82.86 53.64 70.42
+GACE (SECOND Waymo) | 82.8470-02 | 61.06%742 | 72.70+%-28

Table 5. Model Transfer: Applying a GACE module trained
on SECOND detections on Waymo (without LiDAR elongation,
which is not available on KITTI) to different detectors on the
KITTI dataset (moderate difficulty / @R40).

4.3. Generalization and Transferability

Since we use only the detection attributes and corre-
sponding properties of the underlying point cloud as input,
a GACE module trained on base detector A can be directly
applied to another base detector B. Furthermore, since all
metric features are normalized to their maximum possible
value and the statistical parameters (point distribution) are
computed from a normalized unit-length box, GACE can
be applied not only to a different detector, but also directly
to a different detector on a different dataset. Therefore, to
demonstrate the general applicability of GACE, we freeze
a GACE module trained on detections from a SECOND
detector on Waymo, and apply it directly to detections of
a SECOND detector on the KITTI dataset [6]. As shown
in Table 5, first row, this also leads to considerable perfor-
mance improvements despite the distribution shift to a dif-
ferent dataset (different LIDAR sensor, different country).
Even more remarkably, significant performance gains are
also obtained when the same GACE module is applied even
to a different base detector, e.g. +7.42AP for PV-RCNN on
pedestrians while achieving the same performance for cars.
The results demonstrate the excellent generalization capa-
bility of GACE and the general validity of the geometric
information regardless of the dataset.

4.4. Runtime Analysis

In Table 6 we show the runtime analysis of GACE for
a 360° field-of-view Waymo point cloud using a single
NVIDIA® GeForce® RTX 3090 GPU. The computationally
most intensive part is the feature extraction, especially ex-

Feature Points in'Boxes Q.ue.ry 0.56 ms
Extraction Gef)metn.c & Stgtlstlcal Features 0.98 ms

Neighboring Object ID’s Query 0.07 ms
Network H (Instance-specific) 0.14 ms
Inference H¢ (Contextual) o 0.17 ms

Hp (Confidence Estimation) 0.12 ms
Overall 2.04 ms

Table 6. GACE runtime analysis per 360° field-of-view Waymo
point cloud on a single NVIDIA® GeForce® RTX 3090 GPU.

tracting the statistical features for all detections. However,
this can be solved efficiently via PyTorch einsum. During
inference, we first compute the instance-specific plausibility
f7 for each detection via H;, which is then used as input to
H¢ for the corresponding neighbors. Overall, GACE is ca-
pable of processing ~ 490 Waymo point clouds per second
with ~ 100 detections each.

5. Limitations

While our method has proven effective in improving ob-
ject detection performance for vulnerable classes such as
pedestrians and cyclists, it is worth noting that it may not
offer such significant benefits for simpler classes such as
vehicles. This is because all detectors typically have few
false positives for these easier-to-detect objects. Therefore,
there is less room for improvement for this class. However,
it is important to consider the context in which our method
is applied. Even if the performance improvement is not as
large for simpler classes, the overall impact of our method
on safety should not be underestimated. In many real-world
scenarios, pedestrians and cyclists are particularly vulner-
able, and any improvement in their detection can make a
significant contribution to safety.

6. Conclusion

We proposed GACE, a method to better evaluate ob-
ject hypotheses from black-box LiDAR-based 3D object
detectors by explicitly assessing numerous geometric
properties inherent in the detections. This enables a better
separation between true and false positive detections and
thus significantly improves the performance. In a compre-
hensive analysis, we were able to show the performance
of our method for several state-of-the-art detectors and
also demonstrate the generalisation capabilities of GACE.
This underlines the importance and general validity of the
geometric information inherent in 3D detections, which has
been largely neglected in the past.

Acknowledgements This work was partially funded by the Aus-
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