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Abstract

Deep learning methods have led to remarkable progress in multiple object tracking
(MOT). However, when tracking in crowded scenes, existing methods still suffer from
both inaccurate and missing detections. This paper proposes Detection Refinement for
Tracking (DRT) to address these two issues for people tracking. First, we construct an
encoder-decoder backbone network with a novel semi-supervised heatmap training pro-
cedure, which leverages human heatmaps to obtain a more precise localization of the
targets. Second, we integrate a "one patch, multiple predictions" mechanism into DRT
which refines the detection results and recovers occluded pedestrians at the same time.
Additionally, we leverage a data-driven LSTM-based motion model which can recover
lost targets at a negligible computational cost. Compared with strong baseline meth-
ods, our DRT achieves significant improvements on publicly available MOT datasets. In
addition, DRT generalizes well, i.e. it can be applied to any detector to improve their
performance.

1 Introduction

Robust and well-performing MOT algorithms are vital for applications ranging from au-
tonomous vehicles to automated video analysis and surveillance. However, in crowded
scenes, we still suffer from various challenges, such as occlusion, complex and cluttered
backgrounds, pose variations, etc.

Most state-of-the-art trackers, e.g. [4, 10, 41, 44], adopt the tracking-by-detection prin-
ciple, which consists of two major steps: (1) Detecting all objects frame by frame; (2) As-
sociating targets in different frames. Therefore, the performance of MOT relies greatly on
the detection results. Despite the encouraging progress from better detectors [23, 29], there
are still two main problems with MOT in complex scenarios and high-density crowds, as
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(b)
Figure 1: Detection failures of the state-of-the-art tracker JDE [37] (a) and our corresponding
refined results (b) when using the same input detections as JDE on the MOT16 dataset [25].

illustrated in Figure 1. First, complex backgrounds may be incorrectly detected due to ap-
pearance ambiguities. Second, in crowded scenes with frequent occlusions, occluded objects
are easy to miss and adjacent objects are often imprecisely detected as one, resulting in many
false negative trajectories and ID switches.

The easiest way to handle these problems is to collect larger training datasets [44, 46] or
to design better detectors [14, 28, 46]. In this paper, we take another route: Post-processing
the detected patches to improve performance. We propose Detection Refinement for Track-
ing (DRT), which can be used in any MOT method to refine detections, no matter which
detector is originally used. Our DRT consists of an encoder-decoder convolutional network
with two side branches, called DRT-net, and an LSTM based motion model.

The DRT-net has three components: an encoder-decoder backbone network and two
side branches, each branch containing a "Feature Integration" (FI) module. The backbone
network is trained to generate human heatmaps which contain segmentation information and
indicate the specific location of every pedestrian. With the generated heatmaps, the branches
can output more precise coordinates of targets. In order to recover the occluded targets, a
"one patch, multiple predictions" mechanism is introduced. Rather than only predicting one
location for each detected patch, we carefully construct two side branches, one of which is
responsible for attaining more precise detections while the other is for recovering potentially
occluded people. We show that with a well-designed loss function and an efficient semi-
supervised training procedure, difficult targets can be recovered more accurately. Moreover,
we demonstrate the importance of an FI module in effectively reducing false positives by
inserting it into side branches.

In recent years, trajectory forecasting [30] has been tackled by some well-designed RNN-
based models [1, 34]. If transferred to MOT, such robust trajectory forecasting methods
can help recover missed targets during tracking. Consequently, we replace the widely used
Kalman Filter [19] with an LSTM-based motion model in our tracking framework. With the
long term information, the simple motion model can help recover missed targets and thus,
reduce false negatives during online tracking. Moreover, because of the low dimensional
(8D) input vector and simple network structure, prediction time is negligible.

In summary, we make the following contributions:

(1) A novel post-processing method, DRT, is designed for better detection and tracking.

(2) Instance segmentation information as attention and a "one patch, multiple predic-
tions" mechanism are introduced into DRT to refine detection and recover occluded targets.

(3) An LSTM-based motion model with a carefully designed training schema supports
the tracking framework with precise predictions to recover missed targets.

(4) Even with a simplified association framework, our methods can achieve state-of-the-
art performance on standard tracking benchmarks.
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2 Related work

We briefly summarize related work, focusing on top-performing online trackers. To this end,
we resort to the leaderboard of the MOT Challenge', which aims to collect datasets and to
create a standardized evaluation environment. In the following, we classify the related online
trackers by whether they use publicly available detections or private detections.

Tracking with public detections. To track with public detections, existing methods [7,
8, 50] achieve better tracking results by integrating predictors [16, 19] to obtain more candi-
dates. MOTDT [7] generated candidates from Kalman Filter [19] and used R-FCN [11] to
filter out reduplicated candidates. Some other methods [8, 50] adopted a similar idea with
new predictors [12, 16]. These methods are simple but may result in many false positives.
Tracktor [2] leveraged the tracked targets in the current frame as proposals to do a second
detection for the next frame. A second line of works use different association frameworks
for robust tracking. Xiang et al. [41] formulated MOT as a Markov Decision Process and de-
signed a detailed tracking framework. Some methods [13, 31, 42] integrated multiple types
of information and constructed complex RNN models for association. Moreover, Brasé and
Leal-Taixé [5] formulated tracking as a graph problem based on message passing networks.

Tracking with private detections. To achieve better tracking performance, many meth-
ods, e.g. [4, 38, 44], have used their own detectors. SORT [4] adopted Faster RCNN [29]
for accurate detections. POI [44] collected larger amounts of datasets to train the detec-
tion model and person re-identification (ReID) model. Moreover, MAT [14] took advantage
of Cascade RCNN [6] to ensure a well-performing detection. There have also been some
one-stage methods which achieve a balance between performance and efficiency. JDE [37]
inserted an identity classification branch into the FPN [23] detector. FAIR [46] improved
the performance by employing an anchor-free detection network. CTracker [28] relied on
two adjacent frames as input to the detector to obtain detections and associate targets at the
same time. These methods get competitive results by introducing well-performing detectors,
while in our work, we improve the tracking performance by a post-processing method, DRT,
which can improve all existing detectors, no matter how good they initially are. In addition,
ReMOT [43] also put forward the concept of 'refinement’. However, they concentrate on
how to refine the tracklets rather than detections.

3 Detection Refinement for Tracking

In this section, we will first introduce our tracking process in Section 3.1. Then the two
specific parts: DRT-net, which post-processes the inaccurate detections, and the new LSTM-
based motion model will be carefully explained in Section 3.2 and Section 3.3, respectively.

3.1 The overall tracking framework

Data preparation. Let the trajectories in the previous frames be 7 = {1, T, ..., T,} and
their corresponding predicted locations in the current frame ¢ as P, = {p1, p2,...,pn}. The
refined detections output from DRT-net in the current frame are D, = {d|,d, ...,d, } and the
appearance features of Dy are F; = {fi, f2,..., fm}- n and m are the number of trajectories in
previous frames and the number of refined detections in the current frame.

IThe official web page of MOT Challenge can be found at https: //motchallenge.net.
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Matching. First, the appearance cost matrix C,x,, between 7 and D, is computed. For
this, we store the R; most recent feature representations for each 7; = {ry,r, ...,rRl.} and
compute the cost ¢; ; of matching it with detection d; as:

Cij= Gmlﬁ (1=r{ fj) (1

We apply the Hungarian algorithm on C,,, to get the appearance matched pairs M,,p, as
well as unmatched trajectories and detections, mmmhe 4 and Dlmmmhe 4 Pairs with cost
larger than the threshold 6 will not be matched. Second, we find the potential pairs between
Tabr  eq @nd DV by their IoU (Intersection over Union) cost B,y s, where n’ and m’

unmatche unmatched ;
are the number of T;:lm atched a0d D For each unmatched 7; and d, the IoU cost is:

unmatched
b,’j: l—IOU(pi,dj) (2)

We apply the Hungarian algorithm again on B, to find location matched pairs M;,. If any
pair has b; ; larger than 0.5, it will not be matched. After the two steps, we can get the final
matched pairs M = M, UM, unmatched tracks Typmarchea and detections Dypmarched-
Update. After association, for each matched pair (7;,d;), we assign the feature f; and the
location of d; to 7; and drop the oldest feature in 7; if 7; has kept more than R; features. For
any unmatched detection, we generate a new trajectory if its detection confidence is higher
than the pre-set threshold (0.7) or if it can be matched in the next frame. For any unmatched
trajectory, if it has been continuously tracked for a sufficiently long time (4 frames), we check
its predicted location with DRT-net to decide whether to output the predicted location. The
trajectory will be terminated if it is not associated for more than pre-defined A,,,, frames.
Comparison of DRT, JDE and DeepSORT. Our association framework is simplified
from DeepSORT without cascade strategy. Similar to most trackers, DeepSORT, JDE and
DRT employ the same widely-used strategy, i.e. using a motion model to smooth the trajec-
tories and the Hungarian algorithm for data association. DeepSORT adds a deep appearance
descriptor and a cascaded matching step into the framework. JDE is also based on Deep-
SORT. They simultaneously obtain detections and appearance features in one network, but
also need the tracking-by-detection pipeline for association. Our contributions are to refine
the detections via DRT-net (Section 3.2) and the data-driven motion model (Section 3.3).

3.2 DRT-net

In this section, we introduce the architecture of DRT-net, which refines the outputs of stan-
dard object detectors before associating them with trajectories. As illustrated in Figure 2, the
network consists of a backbone network to generate human-shaped heatmaps and two side
branches. Each branch has a Feature Integration (FI) module to learn discriminative features.

3.2.1 Backbone network

The backbone of DRT-net is an encoder-decoder network consisting of the convolution layers
of ResNet50 [15] and three up-projection modules from [18, 21]. During training, the pre-
trained ResNet50 is utilized for fine-tuning. Outputs of the backbone are heatmaps which
can indicate the location of people and will be leveraged as attention to help the side branches
predict more precise locations. Because binary segmentation masks do not convey enough
boundary information (especially in the case of an occlusion), inspired by [48], we adopt the
Gaussian function for generating human heatmaps (Figure 2 (a)).
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Figure 2: (a) DRT-net. It consists of one backbone network and two side branches. The right
side are the segmentation mask and heatmap of the patch. (b) Feature Integration module.

Generating heatmaps. Given the patch of a target in an image and its correspond-
ing segmentation mask M, we first obtain the coordinate of every pixel inside the target
(xi,¥i),i € {1,2,...,N}. N is the amount of pixels inside a target. Then, we use these coordi-
nates to compute the center location (£,7) as well as the variance (ox, 0y):

Finally, the heatmap at location (x,y) is computed using Gaussian function:
0 M(x,y) =0,
H(x,y) = ZE\/;Taye*((Xz;:?Z*(};c?z) Micy)=1. “)

For any partially occluded target, its heatmap is computed only on the visible areas.

Collecting data. Because there is limited annotation for instance segmentation in MOT,
we obtain training data in the following way: First, we utilize the MOTS dataset [35], which
is publicly available and shares the same videos as MOT [25]. In MOTS, some but not all,
people are labelled. Second, we use Detectron2 [40] to detect other unlabelled data. If a
detected box has an IoU larger than 0.7 with any ground truth, its corresponding segmenta-
tion will be kept. We also do a manual check to ensure precise segmentation (imprecise ones
will be dropped directly). The whole data preparation step is needed only once per dataset
and can be done with rather few effort. Third, targets neither labelled nor detected will be
ignored for the backbone network loss and only utilized to train the branches. Therefore, the
backbone network training is actually a semi-supervised task.

Finally, we leverage the smooth /; loss [27] to train the backbone. Let 4 and H represent
the predicted and ground truth heatmap, then the loss is computed as:

In = Fymoorn_11 (h, H). @)

3.2.2 Feature Integration

In order to learn more abundant features, we fuse features from different backbone layers for
the branch network. Four backbone layers in Figure 2 (a) go through the FI module (Fig-
ure 2 (b)) [36] and are then concatenated together to provide low-level texture information,
high-level semantic information and segmentation information. Each backbone layer will
pass three paths (Figure 2 (b)): A convolution layer, a global pooling layer and an identity
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Figure 3: The LSTM-based motion model.

mapping, which is a combination of SENet [17] and ResNet [15]. In Section 4.2, we will
also demonstrate that FI can help filter out more false positives.

3.2.3 One patch, multiple predictions

Recently, pedestrian detection in crowded scenes received more attention from our research
community, e.g. [9, 32, 33]. To recover occluded people, we adapt the "one proposal, mul-
tiple prediction" approach from [9] for multi object tracking. First, we need to adapt the
image based network, which relies on features from a larger receptive field, into a patch
based network. To this end, we design a new two-step loss function and training mode:

stepy : L=l + 1, (c1,81) + 1, (1, 81), (6)
step, : L = I, (c2,82) +11, (I, 82)- (7

Here, [;, is from Equation (5). ¢1, I, c2 and I, are the classification and localization predic-
tions output from the upper and bottom branches in Figure 2, while g; and g; are the top-two
ground truth annotations, i.e. the two best matches for the corresponding patch. I.,,l,,l;,
and /;, are the classification and localization losses for the two branches, which share the
same loss function as SSD [24].

Different from the loss function in [9], which randomly arranges different matchings be-
tween two outputs and their corresponding ground truth targets, we assign a fixed permuta-
tion for the loss function: The "Upper Branch" is assigned to find the best matched target and
refine its location, while the "Bottom Branch" is responsible for predicting if the patch has
another person and recovering its location. This is because our refinement network, which
has limited receptive fields, learns information mainly on the best matched target. During
training, if the loss functions in Equation (6) and (7) are trained together, convergence is sub-
optimal due to optimizing five separate loss terms simultaneously. To this end, we divide the
training into two steps. In step 1, we only train the backbone and upper branch. Then in step
2, the second branch is trained with parameters of the backbone and the upper branch fixed.

For classification, if the input patch has an IoU larger than 0.5 with its best matched or
second matched ground truth, it will be regarded as a positive example by the corresponding
branch. If the IoU is lower than 0.4, it will be used as a negative example. Otherwise it will
be ignored. For localization loss, only patches with IoU larger than 0.4 are used.

3.3 LSTM-based motion prediction model

To follow a temporarily occluded target, we need a motion model forecasting its trajectory.
Recent MOT approaches often replace the traditional Kalman filter by various LSTM based
motion models, especially for evaluations on trajectory forecasting benchmarks [30]. How-
ever, these typically predict only the location of the bounding box center and are not robust to
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noisy detections, which we often encounter in real tracking applications. Thus, we propose
the following data augmentations and training scheme to obtain a both efficient and robust
LSTM-based motion model.

First, instead of predicting only the center locations, we construct an 8D input vector
to predict location and size of the bounding boxes. More formally, let the state §; of a
target in frame ¢ be §; = (X, y;, Wy, by, Axy, Ay, Awy, Ahy ). Here, x;,y;,w; and h, are the center
coordinates, width and height of the target, respectively, while Ai; = i, —i;—1 (i € {x,y,w,h})
are the velocities (initialized with 0 at the first frame). The network inputs the 8D state vector
through a linear layer, then an LSTM unit, and finally two linear output layers to predict the
location and bounding box size in the next frame (see Figure 3).

Second, we discovered that motion models trained with ground truth annotations are not
stable in real scenarios, where only noisy detection results are available. We overcome this
issue by introducing two augmentations to train a more robust model: (1) We replace ground
truth annotations by high quality detections if available, i.e. if there is a corresponding
detection with IoU > 0.7. (2) Additionally, we add noise to the training data by randomly
shifting the boxes.

In practical situations, we need to predict the location of lost targets very frequently.
Training with labelled data, however, can not ensure good long-term forecasting perfor-
mance. To bridge this gap between training and inference, we employ a sampling mecha-
nism known from language processing [45], which randomly selects a training sample from
either ground truth or the predicted bounding box. Let p(i) denote the probability that we
sample the input from ground truth data in epoch i. Then, we will sample the input from the
prediction instead with a probability of 1 — p(i). At the beginning, p(i) should be high so
that the model can converge fast, while in later epochs, more prediction data should be used.
Therefore, we introduce a decay function to generate py;) for different training epoch i:

U

=, 8
Ll+exp(1/ﬂ) (8)

PG
where U is a pre-defined parameter. This yields a robust and efficient motion model, as we
will demonstrate in the following evaluation.

4 Experiments

4.1 Training settings

Experiments are mainly conducted on two public datasets”: MOT16 [25] and MOT17, which
provide the same 7 training videos and 7 test videos but different public detections and
ground truth labels. These videos are challenging because they contain frequent occlusions,
varied camera perspectives, human poses as well as cluttered backgrounds.

Unless stated otherwise, we use the same detections as JDE [37] for tracking. DRT-
net and the motion model only take advantage of the MOT dataset for training (since the
segmentation labels from MOTS [35] are provided for exactly the same train sequences).
All our experiments are implemented in PyTorch [27] with a single Nvidia GTX TITAN Xp
GPU. For DRT-net, the training lasts for 70 epochs with an initial learning rate of 0.0001,
which will be divided by 10 every 30 epochs. Batch size is 40 for each iteration. To extract
features, we use the same Re-Identification (ReID) model trained in [5]. For our motion

2 Additional results are included in the supplemental material.
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[ Method [ MOTAT [ IDFIf [ MTt [ ML{ | FP| | FN] [ IDS] |
JDE 64.4 558 [ 354200 - - 1544
JDE + ResNet50 65.2 592 | 36.1 | 17.6 | 10642 | 51321 | 1421
JDE + DRT-net! 66.8 60.0 | 352 | 18.1 | 8155 | 51150 | 1324
JDE + DRT-net1 + FI x 68.7 60.8 | 366 | 179 | 6824 | 48966 | 1320
JDE + DRT-net! + FI 69.1 612 | 352 | 17.5 | 5610 | 49417 | 1267
JDE + DRT-net2 + FI 69.5 60.3 | 364 | 175 | 5716 | 48549 | 1302
JDE + DRT-net2 + FI + KF 702 | 60.6 | 395 | 169 | 7075 | 46106 | 1185
JDE + DRT-net2 + FI+ LSTM | 711 | 60.9 | 44.0 | 159 | 8244 | 43247 | 1173

Table 1: Ablation study of different components in our method on MOT16. See Section 4.2
for details. x« only uses masks generated from Detectron?2.

DRT-netl | DRT-netl + FI | DRT-net2 + FI | DRT-net2 + FI + LSTM

ResNet50 46.4 52.1 55.6 69.1
ResNet34 29.8 35.2 39.1 58.0

Table 2: Ablation study on the average time (ms) consumed per frame.

model, the training process also takes 70 epochs with an initial learning rate of 0.001 and
batch size 8. All trainable parameters in DRT-net and the motion model are trained using the
Adam optimizer [20] with 8; and f3; set to 0.5 and 0.999, respectively.

Evaluation Metrics. We follow the common evaluation protocol and use the widely
accepted CLEAR MOT metrics [3], including Multiple Object Tracking Accuracy (MOTA),
ID F1 Score (IDF1), Multiple Object Tracking Precision (MOTP), along with the trajectory
quality measures [22], Mostly Tracked (MT), Mostly Lost (ML), False Positives (FP), False
Negatives (FN) and Identity Switches (IDS).

4.2 Ablation study

We conduct ablation experiments on the MOT16 test set to evaluate the performance of dif-
ferent components. The results have been obtained by the official MOT Challenge submis-
sion server and are summarized in Table 1. We start with (1) the baseline method JDE [37]
which uses a framework similar to DeepSORT [38], but uses a private detector. Using the
JDE detections as input, we gradually add our components: (2) ResNet50 backbone without
any other modules is adopted as a reference for fair comparison. (3) DRT-netl has only the
upper branch of Figure 2(a) without the FI module. (4) DRT-netl + FI adds the FI module to
the top branch to train a more discriminative model. We also evaluate this network configu-
ration trained only on Detectron2-generated masks (i.e. replacing the MOTS annotations by
Detectron2 estimates). (5) DRT-net2 + FI adds the bottom branch in Figure 2(a) to DRT-net.
Finally, (6) DRT-net2 + FI + LSTM replaces the Kalman Filter with our LSTM-based motion
model.

As can be seen in Table 1, both our DRT-net and the LSTM-based motion model per-
form well. For the single branch DRT-netl (without FI module), we achieve 2.4% MOTA
improvement compared with JDE. Adding the FI module yields another 2.1% improvement
by reducing much more false positives. These improvements can be attributed to two rea-
sons. On the one hand, our refined detections become more accurate (as can also be seen
by the DetPr score in Table 4), indicating that previous false negatives (true detections with
IoU < 0.5) now become true positives. On the other hand, the classification branch filters
out many background boxes. Some examples can be seen in Figure 1. In addition, because
detected boxes are more precise after going through DRT-net, ID switches also decrease
slightly compared to JDE. The two-branch DRT-net2 obtains another 0.4% MOTA improve-
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‘ ‘ Predicted Frames ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
MOTA 79.2 80.4 80.8 80.9 80.9 80.7
Kalman Filter Fp 880 1673 2311 2981 3682 4458
FN 21242 | 19157 | 18053 | 17307 | 16655 | 16084
MOTA 79.2 80.8 81.4 81.7 82.0 82.1
LSTM FP 863 1417 1930 2459 3003 3583
EN 21234 | 18976 | 17866 | 16985 | 16155 | 15474

Table 3: Trajectory forecasting results of Kalman filter and our LSTM model.

Datasets | Method MOTAT | IDFIT | MT] | ML} | FP| | FN] | IDS] | DetPr] | Hzf GPU
DeepSORT [38] 614 | 622 | 328 | 182 | 12852 | 56668 | 781 | 74.7 | 17.4 | Quadro M 6000
JDE [37] 644 | 558 | 354|200 | - - 1544 | - 18.8 |  RTX2080Ti
POI [44] 66.1 65.1 | 340 | 208 | 5061 | 55914 | 1073 - 9.9 GTX970
Tub_TK_POI [26] 669 | 622 | 390 | 16.1 | 11544 | 47502 | 1236 | 750 | 1.0 | TITAN XP

MOTI6 | CTTracker [28] 676 | 572 | 329 | 23.1 | 8934 | 48305 | 1897 | 757 | 344 | TeslaP40
FAIR [46] { 693 | 723 | 403 | 167 | 13501 | 41653 | 815 | 763 |259 | RTX2080Ti
TraDe$ [39] 70.1 647 | 373 | 200 | 8091 | 45210 | 1144 | 762 | 22 | RTX2080Ti
FAIRV2 [47] & 749 | 728 | 447 | 159 | - - 1074 | - | 259 | RTX2080Ti
DRT_ResNet34_JDE (Ours)x | 702 | 60.6 | 40.6 | 17.0 | 7568 | 45595 | 1142 | 751 | 80 | TITANXP
DRT_IDE (Ours) x 711 | 609 | 440 | 159 | 8244 | 43247 | 1173 | 769 | 6.8 | TITAN XP
DRT_FAIR (Ours) { 744 | 693 | 445 | 16.1 | 8006 | 37710 | 871 | 770 | 65 | TITAN XP
DRT_FAIRV2 (Ours) & 763 | 729 | 48.0 | 14.4 | 14416 | 28023 | 731 | 750 | 64 | TITANXP
DeepSORT [38] 603 | 612 | 315 | 203 | 36111 | 185301 | 2442 | - 17.4 | Quadro M 6000
Tube_TK [26] 630 | 586 | 312 | 199 | 27060 | 177483 | 4137 | 757 | 1.0 | TITAN XP
CTTracker [28] 666 | 574 | 322 | 242 | 22284 | 160491 | 5529 | 763 | 34.4 | Tesla P40

MOT17 | FAIR [46] & 675 | 69.8 | 377 | 208 | - - 2868 | - [259| RTX2080Ti
CenterTrack[49] o 678 | 647 | 346 | 24.6 | 18498 | 160332 | 3039 | 769 | 22 TITAN XP
TraDe$ [39] 69.1 639 | 364 | 21.5 | 20892 | 150060 | 3555 | 76.8 | 22 | RTX2080Ti
FAIRV2 [47] & 737 | 723 | 432 | 173 | - - 3303 - | 259| RTX2080Ti
DRT_IDE (Ours) % 700 | 602 | 425 | 18.0 | 21798 | 144027 | 3606 | 768 | 6.8 | TITAN XP
DRT_FAIR (Ours) { 737 | 685 | 428 | 16.8 | 19608 | 126144 | 2742 | 77.8 | 6.5 | TITANXP
DRT_FAIRV2 (Ours) & 764 | 723 | 468 | 152 | 35934 | 94788 | 2334 | 762 | 64 | TITANXP

Table 4: Comparison with other state-of-the-arts on MOT16 and MOT17. All methods are
under the "private detector" protocol. 1/ denote that higher/lower results are better. Methods
marked with the same sign use the same detector.

ment by recovering occluded targets.

Adding the motion model predictions further improves the performance due to recover-
ing more missing detections. In particular, our LSTM model achieves another 1.6% MOTA
improvement and 129 less ID switches, while the Kalman filter only obtains 0.7% MOTA
improvement and 117 less ID switches. To carefully analyze this improvement, Table 3
analyses how FP, FN and MOTA change when using the motion models to predict a different
amount of frames for lost targets. For our LSTM model, we use 6 of the 7 available training
videos to train the LSTM and use the remaining one for testing. This process is repeated 7
times to get the final results of all 7 videos. For the Kalman filter, we report the best results
after a parameter sweep. We can see that the MOTA improvement saturates after 3 and 5
frames for the Kalman filter and our LSTM model, respectively. The results show that our
LSTM is more robust for forecasting trajectories and has a better performance at long term
occlusions. Because we rank variants by their MOTA score in Table 1, we let the Kalman
filter predict at most 3 frames for each lost target, whereas the LSTM model predicts up to 5
frames. This also explains why FP increases in Table | after applying the LSTM.

4.3 Comparison with the State-of-the-Art

We also compare our method with other state-of-the-art approaches using private detections.
Three different detectors from JDE [37], FAIR [46] and FAIRv2 [47] are used in our method
to prove that our DRT can be easily applied to any detector. The results (see Table 4) are
compared on both MOT16 and MOT 17 test datasets. Additional results on MOT20 and a
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separate detection evaluation on MOT17Det are included in the supplemental material.

Comparison with baseline methods. By refining the detections from three strong de-
tectors, our DRT significantly improves the baseline results. With MOTA 71.1% and IDF1
60.8%, we improve over JDE by 6.7% and 5.0% on MOT16. Compared with one of the
currently strongest detectors, FAIR [46], our DRT still improves MOTA by 5.1% (MOT16)
and 6.2% (MOT17) and performs on par in terms of IDF1 and ID switches. Applied on the
recent FAIRv2 [47], we achieve another MOTA improvement of 1.4% (MOT16) and 2.7%
(MOT17).

Comparison with other methods. Our DRT achieves better results than recent state-of-
the-art approaches published at major conferences. Even based on a worse detector, MOTA
of DRT_JDE is between 1.0% and 4.2% higher than Tub_TK_POI [26], CTTracker [28] and
TraDes [39]. Our results confirm that we can refine existing detectors with a deliberately
simple approach based on using heat maps and motion context to achieve state-of-the-art
tracking-by-detection performance. The heat map structure is a new idea which uses mask
information to achieve more precise detections, thus we obtain the highest detection preci-
sion (DetPr) of all methods. The motion model, on the other hand, can effectively recover
previously missed targets. This results in much less missed trajectories and overall, favorable
MT and ML scores.

Runtime analysis. As DRT is a post-processing approach applicable to any detector,
it is inevitable that it is slower than the baselines. Without any speed optimizations, DRT
achieves 6.8 fps (ResNet50 backbone) and 8.0 fps (ResNet34). From the runtime ablation
in Table 2 we see that the computation time is dominated by DRT-net, whereas the motion
model imposes no bottleneck. Also considering the feature extraction backbone results in
the reported frame rates shown in Table 4. To further improve the speed, the proposed ideas
could be integrated into a detector, turning it into a one-stage refinement process. Since our
focus is on detector-agnostic improvements, we will consider this in our future research.

5 Conclusion

In this paper, we propose a new tracking method, DRT, to handle inaccurate and missing
detections in MOT. Our DRT consists of DRT-net and an LSTM-based motion model. DRT-
net refines the location of detected boxes and recovers occluded objects. The motion model
is used to recover lost targets. With well-organized training data and a carefully designed
training scheme, our new tracking method achieves state-of-the-art performance. Extensive
experiments on publicly available MOT datasets demonstrate the benefits of DRT and that it
can improve the results of even the best MOT methods.
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